
User Guide

AWS Tools for PowerShell

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Tools for PowerShell User Guide

AWS Tools for PowerShell: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Tools for PowerShell User Guide

Table of Contents

What are the AWS Tools for PowerShell? .. 1
Maintenance and support for SDK major versions .. 2
AWS.Tools .. 2
AWSPowerShell.NetCore ... 3
AWSPowerShell ... 3
How to use this guide ... 4

Installation ... 5
Installing on Windows ... 5

Prerequisites ... 6
Install AWS.Tools .. 6
Install AWSPowerShell.NetCore ... 8
Install AWSPowerShell ... 10
Enable Script Execution ... 10
Versioning ... 12
Updating AWS Tools for PowerShell .. 14

Installing on Linux or macOS .. 15
Overview of Setup .. 15
Prerequisites ... 6
Install AWS.Tools .. 16
Install AWSPowerShell.NetCore ... 19
Script Execution ... 10
Configuring the PowerShell Console .. 21
Initialize Your PowerShell Session ... 21
Versioning ... 12
Updating the AWS Tools for PowerShell on Linux or macOS .. 23
Related Information ... 24

Migrating from AWS Tools for PowerShell Version 3.3 to Version 4 ... 24
New Fully Modularized AWS.Tools Version ... 24
New Get-AWSService cmdlet ... 25
New -Select Parameter to Control the Object Returned by a Cmdlet 25
More Consistent Limiting of the Number of Items in the Output .. 27
Easier to Use Stream Parameters .. 28
Extending the Pipe by Property Name .. 28
Static Common Parameters .. 29

iii

AWS Tools for PowerShell User Guide

AWS.Tools Declares and Enforces Manadatory Parameters .. 29
All Parameters Are Nullable ... 29
Removing Previously Deprecated Features ... 30

Get started ... 31
Configure tool authentication ... 31

Enable and configure IAM Identity Center .. 32
Configure the Tools for PowerShell to use IAM Identity Center. .. 32
Start an AWS access portal session .. 34
Example ... 35
Additional information .. 35
Use the AWS CLI ... 36

Specify AWS Regions ... 40
Specifying a Custom or Nonstandard Endpoint ... 41
Additional information .. 42

Configure federated identity ... 42
Prerequisites ... 42
How an Identity-Federated User Gets Federated Access to AWS Service APIs 43
How SAML Support Works in the AWS Tools for PowerShell .. 44
How to Use the PowerShell SAML Configuration Cmdlets .. 45
Additional Reading ... 50

Cmdlet discovery and aliases .. 50
Cmdlet Discovery .. 50
Cmdlet Naming and Aliases ... 56

Pipelining and $AWSHistory .. 61
$AWSHistory .. 61

Credential and profile resolution .. 65
Credentials Search Order .. 65

Users and roles ... 66
Users and permission sets .. 66
Service roles ... 67

Using legacy credentials ... 68
Important warnings and guidelines .. 68
AWS Credentials .. 69
Shared Credentials .. 78

Work with AWS services ... 84
PowerShell File Concatenation Encoding .. 84

iv

AWS Tools for PowerShell User Guide

Returned Objects for the PowerShell Tools ... 85
Amazon EC2 .. 85
Amazon S3 ... 85
AWS Lambda and AWS Tools for PowerShell .. 86
Amazon SNS and Amazon SQS ... 86
CloudWatch ... 86
See Also .. 86
Topics .. 86
Amazon S3 and Tools for Windows PowerShell .. 87

Create an Amazon S3 Bucket, Verify Its Region, and Optionally Remove It 88
Configure an Amazon S3 Bucket as a Website and Enable Logging .. 89
Upload Objects to an Amazon S3 Bucket ... 89
Delete Amazon S3 Objects and Buckets .. 91
Upload In-Line Text Content to Amazon S3 ... 93

Amazon EC2 and Tools for Windows PowerShell ... 93
Create a Key Pair .. 94
Create a Security Group .. 96
Find an AMI ... 100
Launch an Instance .. 104

AWS Lambda and AWS Tools for PowerShell .. 108
Prerequisites ... 6
Install the AWSLambdaPSCore Module ... 109
See Also .. 86

Amazon SQS, Amazon SNS and Tools for Windows PowerShell ... 110
Create an Amazon SQS queue and get queue ARN .. 110
Create an Amazon SNS topic ... 111
Give permissions to the SNS topic ... 111
Subscribe the queue to the SNS topic ... 112
Give permissions ... 112
Verify results .. 112

CloudWatch from the AWS Tools for Windows PowerShell .. 114
Publish a Custom Metric to Your CloudWatch Dashboard ... 114
See Also .. 86

Using ClientConfig ... 115
Using the ClientConfig parameter .. 115
Using an undefined property ... 116

v

AWS Tools for PowerShell User Guide

Specifying the AWS Region .. 116
Security .. 117

Data protection .. 117
Data encryption .. 118

Identity and Access Management .. 119
Audience ... 119
Authenticating with identities ... 120
Managing access using policies ... 123
How AWS services work with IAM .. 126
Troubleshooting AWS identity and access .. 126

Compliance Validation .. 128
Enforcing a minimum TLS version ... 129

Cmdlet reference ... 130
Document history .. 131

vi

AWS Tools for PowerShell User Guide

What are the AWS Tools for PowerShell?

The AWS Tools for PowerShell are a set of PowerShell modules that are built on the functionality
exposed by the AWS SDK for .NET. The AWS Tools for PowerShell enable you to script operations
on your AWS resources from the PowerShell command line.

The cmdlets provide an idiomatic PowerShell experience for specifying parameters and handling
results even though they are implemented using the various AWS service HTTP query APIs. For
example, the cmdlets for the AWS Tools for PowerShell support PowerShell pipelining—that is, you
can pipe PowerShell objects in and out of the cmdlets.

The AWS Tools for PowerShell are flexible in how they enable you to handle credentials, including
support for the AWS Identity and Access Management (IAM) infrastructure. You can use the tools
with IAM user credentials, temporary security tokens, and IAM roles.

The AWS Tools for PowerShell support the same set of services and AWS Regions that are
supported by the SDK. You can install the AWS Tools for PowerShell on computers running
Windows, Linux, or macOS operating systems.

Note

AWS Tools for PowerShell version 4 is the latest major release, and is a backward-
compatible update to AWS Tools for PowerShell version 3.3. It adds significant
improvements while maintaining existing cmdlet behavior. Your existing scripts should
continue to work after upgrading to the new version, but we do recommend that you test
them thoroughly before upgrading. For more information about the changes in version 4,
see Migrating from AWS Tools for PowerShell Version 3.3 to Version 4.

The AWS Tools for PowerShell are available as the following three distinct packages:

• AWS.Tools

• AWSPowerShell.NetCore

• AWSPowerShell

1

AWS Tools for PowerShell User Guide

Maintenance and support for SDK major versions

For information about maintenance and support for SDK major versions and their underlying
dependencies, see the following in the AWS SDKs and Tools Reference Guide:

• AWS SDKs and tools maintenance policy

• AWS SDKs and tools version support matrix

AWS.Tools - A modularized version of the AWS Tools for
PowerShell

This version of AWS Tools for PowerShell is the recommended version for any computer running
PowerShell in a production environment. Because it's modularized, you need to download and load
only the modules for the services you want to use. This reduces download times, memory usage,
and, in most cases, enables auto-importing of AWS.Tools cmdlets without the need to manually
call Import-Module first.

This is the latest version of AWS Tools for PowerShell and runs on all supported operating
systems, including Windows, Linux, and macOS. This package provides one installation module,
AWS.Tools.Installer, one common module, AWS.Tools.Common, and one module for each
AWS service, for example, AWS.Tools.EC2, AWS.Tools.IAM, AWS.Tools.S3, and so on.

The AWS.Tools.Installer module provides cmdlets that enable you to install, update, and
remove the modules for each of the AWS services. The cmdlets in this module automatically ensure
that you have all the dependent modules required to support the modules you want to use.

The AWS.Tools.Common module provides cmdlets for configuration and authentication that
are not service specific. To use the cmdlets for an AWS service, you just run the command.
PowerShell automatically imports the AWS.Tools.Common module and the module for the
AWS service whose cmdlet you want to run. This module is automatically installed if you use the
AWS.Tools.Installer module to install the service modules.

You can install this version of AWS Tools for PowerShell on computers that are running:

• PowerShell Core 6.0 or later on Windows, Linux, or macOS.

Maintenance and support for SDK major versions 2

https://docs.aws.amazon.com/sdkref/latest/guide/overview.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/version-support-matrix.html
https://www.powershellgallery.com/packages/AWS.Tools.Common
https://sdk-for-net.amazonwebservices.com/ps/v4/latest/AWS.Tools.zip

AWS Tools for PowerShell User Guide

• Windows PowerShell 5.1 or later on Windows with the .NET Framework 4.7.2 or later.

Throughout this guide, when we need to specify this version only, we refer to it by its module
name: AWS.Tools.

AWSPowerShell.NetCore - A single-module version of the AWS
Tools for PowerShell

This version consists of a single, large module that contains support for all AWS services. Before
you can use this module, you must manually import it.

You can install this version of AWS Tools for PowerShell on computers that are running:

• PowerShell Core 6.0 or later on Windows, Linux, or macOS.

• Windows PowerShell 3.0 or later on Windows with the .NET Framework 4.7.2 or later.

Throughout this guide, when we need to specify this version only, we refer to it by its module
name: AWSPowerShell.NetCore.

AWSPowerShell - A single-module version for Windows
PowerShell

This version of AWS Tools for PowerShell is compatible with and installable on only Windows
computers that are running Windows PowerShell versions 2.0 through 5.1. It is not compatible with
PowerShell Core 6.0 or later, or any other operating system (Linux or macOS). This version consists
of a single, large module that contains support for all AWS services.

Throughout this guide, when we need to specify this version only, we refer to it by its module
name: AWSPowerShell.

AWSPowerShell.NetCore 3

https://www.powershellgallery.com/packages/AWSPowerShell.NetCore/
https://sdk-for-net.amazonwebservices.com/ps/v4/latest/AWSPowerShell.NetCore.zip
https://www.powershellgallery.com/packages/AWSPowerShell/
https://sdk-for-net.amazonwebservices.com/ps/v4/latest/AWSPowerShell.zip

AWS Tools for PowerShell User Guide

How to use this guide

The guide is divided into the following major sections.

Installing the AWS Tools for PowerShell

This section explains how to install the AWS Tools for PowerShell. It includes how to sign up for
AWS if you don't already have an account, and how to create an IAM user that you can use to
run the cmdlets.

Get started with the AWS Tools for Windows PowerShell

This section describes the fundamentals of using the AWS Tools for PowerShell, such as
specifying credentials and AWS Regions, finding cmdlets for a particular service, and using
aliases for cmdlets.

Work with AWS services in the AWS Tools for PowerShell

This section includes information about using the AWS Tools for PowerShell to perform some of
the most common AWS tasks.

How to use this guide 4

AWS Tools for PowerShell User Guide

Installing the AWS Tools for PowerShell

To successfully install and use the AWS Tools for PowerShell cmdlets, see the steps in the following
topics.

Topics

• Installing the AWS Tools for PowerShell on Windows

• Installing AWS Tools for PowerShell on Linux or macOS

• Migrating from AWS Tools for PowerShell Version 3.3 to Version 4

Installing the AWS Tools for PowerShell on Windows

A Windows-based computer can run any of the AWS Tools for PowerShell package options:

• AWS.Tools - The modularized version of AWS Tools for PowerShell. Each AWS
service is supported by its own individual, small module, with shared support modules
AWS.Tools.Common and AWS.Tools.Installer.

• AWSPowerShell.NetCore - The single, large-module version of AWS Tools for PowerShell. All
AWS services are supported by this single, large module.

Note

Be aware that the single module might be too large to use with AWS Lambda functions.
Instead, use the modularized version shown above.

• AWSPowerShell - The legacy Windows-specific, single, large-module version of AWS Tools for
PowerShell. All AWS services are supported by this single, large module.

The package you choose depends on the release and edition of Windows that you're running.

Note

The Tools for Windows PowerShell (AWSPowerShell module) are installed by default on all
Windows-based Amazon Machine Images (AMIs).

Installing on Windows 5

https://aws.amazon.com/lambda/

AWS Tools for PowerShell User Guide

Setting up the AWS Tools for PowerShell involves the following high-level tasks, described in detail
in this topic.

1. Install the AWS Tools for PowerShell package option that's appropriate for your environment.

2. Verify that script execution is enabled by running the Get-ExecutionPolicy cmdlet.

3. Import the AWS Tools for PowerShell module into your PowerShell session.

Prerequisites

Newer versions of PowerShell, including PowerShell Core, are available as downloads from
Microsoft at Installing various versions of PowerShell on Microsoft's Web site.

Install AWS.Tools on Windows

You can install the modularized version of AWS Tools for PowerShell on computers that are
running Windows with Windows PowerShell 5.1, or PowerShell Core 6.0 or later. For information
about how to install PowerShell Core, see Installing various versions of PowerShell on Microsoft's
Web site.

You can install AWS.Tools in one of three ways:

• Using the cmdlets in the AWS.Tools.Installer module. This module simplifies the
installation and update of other AWS.Tools modules. AWS.Tools.Installer requires
PowerShellGet, and automatically downloads and installs an updated version of it.
AWS.Tools.Installer automatically keeps your module versions in sync. When you install or
update to a newer version of one module, the cmdlets in AWS.Tools.Installer automatically
update all of your other AWS.Tools modules to the same version.

This method is described in the procedure that follows.

• Downloading the modules from AWS.Tools.zip and extracting them in one of the module
folders. You can discover your module folders by displaying the value of the PSModulePath
environment variable.

• Installing each service module from the PowerShell Gallery using the Install-Module cmdlet.

To install AWS.Tools on Windows using the AWS.Tools.Installer module

1. Start a PowerShell session.

Prerequisites 6

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell
https://sdk-for-net.amazonwebservices.com/ps/v4/latest/AWS.Tools.zip

AWS Tools for PowerShell User Guide

Note

We recommend that you don't run PowerShell as an administrator with elevated
permissions except when required by the task at hand. This is because of the potential
security risk and is inconsistent with the principle of least privilege.

2. To install the modularized AWS.Tools package, run the following command.

PS > Install-Module -Name AWS.Tools.Installer

Untrusted repository
You are installing the modules from an untrusted repository. If you trust this
 repository, change its InstallationPolicy value by running the Set-PSRepository
 cmdlet. Are you sure
 you want to install the modules from 'PSGallery'?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
 "N"): y

If you are notified that the repository is "untrusted", it asks you if you want to install anyway.
Enter y to allow PowerShell to install the module. To avoid the prompt and install the module
without trusting the repository, you can run the command with the -Force parameter.

PS > Install-Module -Name AWS.Tools.Installer -Force

3. You can now install the module for each AWS service that you want to use by using the
Install-AWSToolsModule cmdlet. For example, the following command installs the
Amazon EC2 and Amazon S3 modules. This command also installs any dependent modules
that are required for the specified module to work. For example, when you install your first
AWS.Tools service module, it also installs AWS.Tools.Common. This is a shared module
required by all AWS service modules. It also removes older versions of the modules, and
updates other modules to the same newer version.

PS > Install-AWSToolsModule AWS.Tools.EC2,AWS.Tools.S3 -CleanUp
 Confirm
 Are you sure you want to perform this action?
 Performing the operation "Install-AWSToolsModule" on target "AWS Tools version
 4.0.0.0".
 [Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
 "Y"):

Install AWS.Tools 7

AWS Tools for PowerShell User Guide

 Installing module AWS.Tools.Common version 4.0.0.0
 Installing module AWS.Tools.EC2 version 4.0.0.0
 Installing module AWS.Tools.Glacier version 4.0.0.0
 Installing module AWS.Tools.S3 version 4.0.0.0

 Uninstalling AWS.Tools version 3.3.618.0
 Uninstalling module AWS.Tools.Glacier
 Uninstalling module AWS.Tools.S3
 Uninstalling module AWS.Tools.SimpleNotificationService
 Uninstalling module AWS.Tools.SQS
 Uninstalling module AWS.Tools.Common

Note

The Install-AWSToolsModule cmdlet downloads all requested modules from
the PSRepository named PSGallery (https://www.powershellgallery.com/)
and considers it a trusted source. Use the command Get-PSRepository -Name
PSGallery for more information about this PSRepository.

By default, the previous command installs modules into the %USERPROFILE%\Documents
\WindowsPowerShell\Modules folder. To install the AWS Tools for PowerShell for all users
of a computer, you must run the following command in a PowerShell session that you started
as an administrator. For example, the following command installs the IAM module to the
%ProgramFiles%\WindowsPowerShell\Modules folder that is accessible by all users.

PS > Install-AWSToolsModule AWS.Tools.IdentityManagement -Scope AllUsers

To install other modules, run similar commands with the appropriate module names, as found
in the PowerShell Gallery.

Install AWSPowerShell.NetCore on Windows

You can install the AWSPowerShell.NetCore on computers that are running Windows with
PowerShell version 3 through 5.1, or PowerShell Core 6.0 or later. For information about how to
install PowerShell Core, see Installing various versions of PowerShell on the Microsoft PowerShell
website.

Install AWSPowerShell.NetCore 8

https://www.powershellgallery.com/
https://www.powershellgallery.com/packages?q=aws
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell

AWS Tools for PowerShell User Guide

You can install AWSPowerShell.NetCore in one of two ways

• Downloading the module from AWSPowerShell.NetCore.zip and extracting it in one of the
module directories. You can discover your module directories by displaying the value of the
PSModulePath environment variable.

• Installing from the PowerShell Gallery using the Install-Module cmdlet, as described in the
following procedure.

To install AWSPowerShell.NetCore from the PowerShell Gallery using the Install-Module
cmdlet

To install the AWSPowerShell.NetCore from the PowerShell Gallery, your computer must be
running PowerShell 5.0 or later, or running PowerShellGet on PowerShell 3 or later. Run the
following command.

PS > Install-Module -name AWSPowerShell.NetCore

If you're running PowerShell as administrator, the previous command installs AWS Tools for
PowerShell for all users on the computer. If you're running PowerShell as a standard user without
administrator permissions, that same command installs AWS Tools for PowerShell for only the
current user.

To install for only the current user when that user has administrator permissions, run the command
with the -Scope CurrentUser parameter set, as follows.

PS > Install-Module -name AWSPowerShell.NetCore -Scope CurrentUser

Although PowerShell 3.0 and later releases typically load modules into your PowerShell session
the first time you run a cmdlet in the module, the AWSPowerShell.NetCore module is too large
to support this functionality. You must instead explicitly load the AWSPowerShell.NetCore Core
module into your PowerShell session by running the following command.

PS > Import-Module AWSPowerShell.NetCore

To load the AWSPowerShell.NetCore module into a PowerShell session automatically, add that
command to your PowerShell profile. For more information about editing your PowerShell profile,
see About Profiles in the PowerShell documentation.

Install AWSPowerShell.NetCore 9

https://sdk-for-net.amazonwebservices.com/ps/v4/latest/AWSPowerShell.NetCore.zip
https://www.powershellgallery.com/packages/PowerShellGet
https://docs.microsoft.com/powershell/module/microsoft.powershell.core/about/about_profiles

AWS Tools for PowerShell User Guide

Install AWSPowerShell on Windows PowerShell

You can install the AWS Tools for Windows PowerShell in one of two ways:

• Downloading the module from AWSPowerShell.zip and extracting it in one of the module
directories. You can discover your module directories by displaying the value of the
PSModulePath environment variable.

• Installing from the PowerShell Gallery using the Install-Module cmdlet as described in the
following procedure.

To install AWSPowerShell from the PowerShell Gallery using the Install-Module cmdlet

You can install the AWSPowerShell from the PowerShell Gallery if you're running PowerShell
5.0 or later, or have installed PowerShellGet on PowerShell 3 or later. You can install and update
AWSPowerShell from Microsoft's PowerShell Gallery by running the following command.

 PS > Install-Module -Name AWSPowerShell

To load the AWSPowerShell module into a PowerShell session automatically, add the previous
import-module cmdlet to your PowerShell profile. For more information about editing your
PowerShell profile, see About Profiles in the PowerShell documentation.

Note

The Tools for Windows PowerShell are installed by default on all Windows-based Amazon
Machine Images (AMIs).

Enable Script Execution

To load the AWS Tools for PowerShell modules, you must enable PowerShell script execution. To
enable script execution, run the Set-ExecutionPolicy cmdlet to set a policy of RemoteSigned.
For more information, see About Execution Policies on the Microsoft Technet website.

Note

This is a requirement only for computers that are running Windows. The
ExecutionPolicy security restriction is not present on other operating systems.

Install AWSPowerShell 10

https://sdk-for-net.amazonwebservices.com/ps/v4/latest/AWSPowerShell.zip
https://www.powershellgallery.com/packages/PowerShellGet
https://www.powershellgallery.com/packages/AWSPowerShell
https://docs.microsoft.com/powershell/module/microsoft.powershell.core/about/about_profiles?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies

AWS Tools for PowerShell User Guide

To enable script execution

1. Administrator rights are required to set the execution policy. If you are not logged in as a user
with administrator rights, open a PowerShell session as Administrator. Choose Start, and then
choose All Programs. Choose Accessories, and then choose Windows PowerShell. Right-click
Windows PowerShell, and on the context menu, choose Run as administrator.

2. At the command prompt, enter the following.

PS > Set-ExecutionPolicy RemoteSigned

Note

On a 64-bit system, you must do this separately for the 32-bit version of PowerShell,
Windows PowerShell (x86).

If you don't have the execution policy set correctly, PowerShell shows the following error whenever
you try to run a script, such as your profile.

File C:\Users\username\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1
 cannot be loaded because the execution
 of scripts is disabled on this system. Please see "get-help about_signing" for more
 details.
At line:1 char:2
+ . <<<< 'C:\Users\username\Documents\WindowsPowerShell
\Microsoft.PowerShell_profile.ps1'
 + CategoryInfo : NotSpecified: (:) [], PSSecurityException
 + FullyQualifiedErrorId : RuntimeException

The Tools for Windows PowerShell installer automatically updates the PSModulePath to include
the location of the directory that contains the AWSPowerShell module.

Because the PSModulePath includes the location of the AWS module's directory, the Get-Module
-ListAvailable cmdlet shows the module.

PS > Get-Module -ListAvailable

ModuleType Name ExportedCommands

Enable Script Execution 11

http://msdn.microsoft.com/en-us/library/windows/desktop/dd878326.aspx

AWS Tools for PowerShell User Guide

---------- ---- ----------------
Manifest AppLocker {}
Manifest BitsTransfer {}
Manifest PSDiagnostics {}
Manifest TroubleshootingPack {}
Manifest AWSPowerShell {Update-EBApplicationVersion, Set-DPStatus,
 Remove-IAMGroupPol...

Versioning

AWS releases new versions of the AWS Tools for PowerShell periodically to support new AWS
services and features. To determine the version of the Tools that you have installed, run the Get-
AWSPowerShellVersion cmdlet.

PS > Get-AWSPowerShellVersion

Tools for PowerShell
Version 4.1.11.0
Copyright 2012-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Amazon Web Services SDK for .NET
Core Runtime Version 3.7.0.12
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Release notes: https://github.com/aws/aws-tools-for-powershell/blob/master/CHANGELOG.md

This software includes third party software subject to the following copyrights:
- Logging from log4net, Apache License
[http://logging.apache.org/log4net/license.html]

You can also add the -ListServiceVersionInfo parameter to a Get-AWSPowerShellVersion
command to see a list of the AWS services that are supported in the current version of the tools. If
you use the modularized AWS.Tools.* option, only the modules that you currently have imported
are displayed.

PS > Get-AWSPowerShellVersion -ListServiceVersionInfo
...

Service Noun Prefix Module Name SDK

 Assembly

Versioning 12

https://docs.aws.amazon.com/powershell/latest/reference/items/Get-AWSPowerShellVersion.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-AWSPowerShellVersion.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-AWSPowerShellVersion.html

AWS Tools for PowerShell User Guide

 Version
------- ----------- -----------

Alexa For Business ALXB AWS.Tools.AlexaForBusiness
 3.7.0.11
Amplify Backend AMPB AWS.Tools.AmplifyBackend
 3.7.0.11
Amazon API Gateway AG AWS.Tools.APIGateway
 3.7.0.11
Amazon API Gateway Management API AGM AWS.Tools.ApiGatewayManagementApi
 3.7.0.11
Amazon API Gateway V2 AG2 AWS.Tools.ApiGatewayV2
 3.7.0.11
Amazon Appflow AF AWS.Tools.Appflow
 3.7.1.4
Amazon Route 53 R53 AWS.Tools.Route53
 3.7.0.12
Amazon Route 53 Domains R53D AWS.Tools.Route53Domains
 3.7.0.11
Amazon Route 53 Resolver R53R AWS.Tools.Route53Resolver
 3.7.1.5
Amazon Simple Storage Service (S3) S3 AWS.Tools.S3
 3.7.0.13
...

To determine the version of PowerShell that you are running, enter $PSVersionTable to view the
contents of the $PSVersionTable automatic variable.

PS > $PSVersionTable

Name Value
---- -----
PSVersion 6.2.2
PSEdition Core
GitCommitId 6.2.2
OS Darwin 18.7.0 Darwin Kernel Version 18.7.0: Tue Aug 20
 16:57:14 PDT 2019; root:xnu-4903.271.2~2/RELEASE_X86_64
Platform Unix
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0…}
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.0.1
WSManStackVersion 3.0

Versioning 13

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-6

AWS Tools for PowerShell User Guide

Updating the AWS Tools for PowerShell on Windows

Periodically, as updated versions of the AWS Tools for PowerShell are released, you should update
the version that you are running locally.

Update the modularized AWS.Tools modules

To update your AWS.Tools modules to the latest version, run the following command:

PS > Update-AWSToolsModule -CleanUp

This command updates all of the currently installed AWS.Tools modules and, after a successful
update, removes other installed versions.

Note

The Update-AWSToolsModule cmdlet downloads all modules from the PSRepository
named PSGallery (https://www.powershellgallery.com/) and considers it a trusted
source. Use the command: Get-PSRepository -Name PSGallery for more information
on this PSRepository.

Update the Tools for PowerShell Core

Run the Get-AWSPowerShellVersion cmdlet to determine the version that you are running, and
compare that with the version of Tools for Windows PowerShell that is available on the PowerShell
Gallery website. We suggest you check every two to three weeks. Support for new commands and
AWS services is available only after you update to a version with that support.

Before you install a newer release of AWSPowerShell.NetCore, uninstall the existing module.
Close any open PowerShell sessions before you uninstall the existing package. Run the following
command to uninstall the package.

PS > Uninstall-Module -Name AWSPowerShell.NetCore -AllVersions

After the package is uninstalled, install the updated module by running the following command.

PS > Install-Module -Name AWSPowerShell.NetCore

Updating AWS Tools for PowerShell 14

https://www.powershellgallery.com/
https://www.powershellgallery.com/packages/AWSPowerShell
https://www.powershellgallery.com/packages/AWSPowerShell

AWS Tools for PowerShell User Guide

After installation, run the command Import-Module AWSPowerShell.NetCore to load the
updated cmdlets into your PowerShell session.

Update the Tools for Windows PowerShell

Run the Get-AWSPowerShellVersion cmdlet to determine the version that you are running, and
compare that with the version of Tools for Windows PowerShell that is available on the PowerShell
Gallery website. We suggest you check every two to three weeks. Support for new commands and
AWS services is available only after you update to a version with that support.

• If you installed by using the Install-Module cmdlet, run the following commands.

PS > Uninstall-Module -Name AWSPowerShell -AllVersions
PS > Install-Module -Name AWSPowerShell

• If you installed by using a downloaded ZIP file:

1. Download the most recent version from the Tools for PowerShell web site. Compare the
package version number in the downloaded file name with the version number you get when
you run the Get-AWSPowerShellVersion cmdlet.

2. If the download version is a higher number than the version you have installed, close all Tools
for Windows PowerShell consoles.

3. Install the newer version of the Tools for Windows PowerShell.

After installation, run Import-Module AWSPowerShell to load the updated cmdlets into your
PowerShell session. Or run the custom AWS Tools for PowerShell console from your Start menu.

Installing AWS Tools for PowerShell on Linux or macOS

This topic provides instructions on how to install the AWS Tools for PowerShell on Linux or macOS.

Overview of Setup

To install AWS Tools for PowerShell on a Linux or macOS computer, you can choose from two
package options:

• AWS.Tools – The modularized version of AWS Tools for PowerShell. Each AWS
service is supported by its own individual, small module, with shared support modules
AWS.Tools.Common.

Installing on Linux or macOS 15

https://www.powershellgallery.com/packages/AWSPowerShell
https://www.powershellgallery.com/packages/AWSPowerShell
https://aws.amazon.com/powershell/

AWS Tools for PowerShell User Guide

• AWSPowerShell.NetCore – The single, large-module version of AWS Tools for PowerShell. All
AWS services are supported by this single, large module.

Note

Be aware that the single module might be too large to use with AWS Lambda functions.
Instead, use the modularized version shown above.

Setting either of these up on a computer running Linux or macOS involves the following tasks,
described in detail later in this topic:

1. Install PowerShell Core 6.0 or later on a supported system.

2. After installing PowerShell Core, start PowerShell by running pwsh in your system shell.

3. Install either AWS.Tools or AWSPowerShell.NetCore.

4. Run the appropriate Import-Module cmdlet to import the module into your PowerShell
session.

5. Run the Initialize-AWSDefaultConfiguration cmdlet to provide your AWS credentials.

Prerequisites

To run the AWS Tools for PowerShell Core, your computer must be running PowerShell Core 6.0 or
later.

• For a list of supported Linux platform releases and for information about how to install the
latest version of PowerShell on a Linux-based computer, see Installing PowerShell on Linux on
Microsoft's website. Some Linux-based operating systems, such as Arch, Kali, and Raspbian, are
not officially supported, but have varying levels of community support.

• For information about supported macOS versions and about how to install the latest version of
PowerShell on macOS, see Installing PowerShell on macOS on Microsoft's website.

Install AWS.Tools on Linux or macOS

You can install the modularized version of AWS Tools for PowerShell on computers that are
running PowerShell Core 6.0 or later. For information about how to install PowerShell Core, see
Installing various versions of PowerShell on the Microsoft PowerShell website.

Prerequisites 16

https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/powershell/latest/reference/items/Initialize-AWSDefaultConfiguration.html
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-macos
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell

AWS Tools for PowerShell User Guide

You can install AWS.Tools in one of three ways:

• Using the cmdlets in the AWS.Tools.Installer module. This module simplifies the
installation and update of other AWS.Tools modules. AWS.Tools.Installer requires
PowerShellGet, and automatically downloads and installs an updated version of it.
AWS.Tools.Installer automatically keeps your module versions in sync. When you install or
update to a newer version of one module, the cmdlets in AWS.Tools.Installer automatically
update all of your other AWS.Tools modules to the same version.

This method is described in the procedure that follows.

• Downloading the modules from AWS.Tools.zip and extracting them in one of the
module directories. You can discover your module directories by printing the value of the
$Env:PSModulePath variable.

• Installing each service module from the PowerShell Gallery using the Install-Module cmdlet.

To install AWS.Tools on Linux or macOS using the AWS.Tools.Installer module

1. Start a PowerShell Core session by running the following command.

$ pwsh

Note

We recommend that you don't run PowerShell as an administrator with elevated
permissions except when required by the task at hand. This is because of the potential
security risk and is inconsistent with the principle of least privilege.

2. To install the modularized AWS.Tools package using the AWS.Tools.Installer module,
run the following command.

PS > Install-Module -Name AWS.Tools.Installer

Untrusted repository
You are installing the modules from an untrusted repository. If you trust this
 repository, change its InstallationPolicy value by running the Set-PSRepository
 cmdlet. Are you sure
 you want to install the modules from 'PSGallery'?

Install AWS.Tools 17

https://sdk-for-net.amazonwebservices.com/ps/v4/latest/AWS.Tools.zip

AWS Tools for PowerShell User Guide

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
 "N"): y

If you are notified that the repository is "untrusted", you're asked if you want to install anyway.
Enter y to allow PowerShell to install the module. To avoid the prompt and install the module
without trusting the repository, you can run the following command.

PS > Install-Module -Name AWS.Tools.Installer -Force

3. You can now install the module for each service that you want to use. For example, the
following command installs the Amazon EC2 and Amazon S3 modules. This command
also installs any dependent modules that are required for the specified module to work.
For example, when you install your first AWS.Tools service module, it also installs
AWS.Tools.Common. This is a shared module required by all AWS service modules. It also
removes older versions of the modules, and updates other modules to the same newer version.

PS > Install-AWSToolsModule AWS.Tools.EC2,AWS.Tools.S3 -CleanUp
Confirm
Are you sure you want to perform this action?
 Performing the operation "Install-AWSToolsModule" on target "AWS Tools version
 4.0.0.0".
 [Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
 "Y"):

 Installing module AWS.Tools.Common version 4.0.0.0
 Installing module AWS.Tools.EC2 version 4.0.0.0
 Installing module AWS.Tools.Glacier version 4.0.0.0
 Installing module AWS.Tools.S3 version 4.0.0.0

 Uninstalling AWS.Tools version 3.3.618.0
 Uninstalling module AWS.Tools.Glacier
 Uninstalling module AWS.Tools.S3
 Uninstalling module AWS.Tools.SimpleNotificationService
 Uninstalling module AWS.Tools.SQS
 Uninstalling module AWS.Tools.Common

Note

The Install-AWSToolsModule cmdlet downloads all requested modules from
the PSRepository named PSGallery (https://www.powershellgallery.com/) and

Install AWS.Tools 18

https://www.powershellgallery.com/

AWS Tools for PowerShell User Guide

considers the repository as a trusted source. Use the command Get-PSRepository -
Name PSGallery for more information about this PSRepository.

The previous command installs modules into the default directories on your system. The
actual directories depend on your operating system distribution and version and on the
version of PowerShell you installed. For example, if you installed PowerShell 7 on a RHEL-like
system, the default modules are most likely located in /opt/microsoft/powershell/7/
Modules (or $PSHOME/Modules) and user modules are most likely located in ~/.local/
share/powershell/Modules. For more information, see Install PowerShell on Linux on
the Microsoft PowerShell website. To see where modules are installed, run the following
command:

PS > Get-Module -ListAvailable

To install other modules, run similar commands with the appropriate module names, as found
in the PowerShell Gallery.

Install AWSPowerShell.NetCore on Linux or macOS

To upgrade to a newer release of AWSPowerShell.NetCore, follow the instructions in Updating the
AWS Tools for PowerShell on Linux or macOS. Uninstall earlier versions of AWSPowerShell.NetCore
first.

You can install AWSPowerShell.NetCore in one of two ways:

• Downloading the module from AWSPowerShell.NetCore.zip and extracting it in one of
the module directories. You can discover your module directories by printing the value of the
$Env:PSModulePath variable.

• Installing from the PowerShell Gallery using the Install-Module cmdlet as described in the
following procedure.

To install AWSPowerShell.NetCore on Linux or macOS using the Install-Module cmdlet

Start a PowerShell Core session by running the following command.

$ pwsh

Install AWSPowerShell.NetCore 19

https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux
https://www.powershellgallery.com/packages?q=aws
https://sdk-for-net.amazonwebservices.com/ps/v4/latest/AWSPowerShell.NetCore.zip

AWS Tools for PowerShell User Guide

Note

We recommend that you don't start PowerShell by running sudo pwsh to run PowerShell
with elevated, administrator rights. This is because of the potential security risk and is
inconsistent with the principle of least privilege.

To install the AWSPowerShell.NetCore single-module package from the PowerShell Gallery, run the
following command.

PS > Install-Module -Name AWSPowerShell.NetCore

Untrusted repository
You are installing the modules from an untrusted repository. If you trust this
 repository, change its InstallationPolicy value by running the Set-PSRepository
 cmdlet. Are you sure
 you want to install the modules from 'PSGallery'?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
 "N"): y

If you are notified that the repository is "untrusted", you're asked if you want to install anyway.
Enter y to allow PowerShell to install the module. To avoid the prompt without trusting the
repository, you can run the following command.

PS > Install-Module -Name AWSPowerShell.NetCore -Force

You don't have to run this command as root, unless you want to install the AWS Tools for
PowerShell for all users of a computer. To do this, run the following command in a PowerShell
session that you have started with sudo pwsh.

PS > Install-Module -Scope AllUsers -Name AWSPowerShell.NetCore -Force

Script Execution

The Set-ExecutionPolicy command isn't available on non-Windows systems. You can run Get-
ExecutionPolicy, which shows that the default execution policy setting in PowerShell Core
running on non-Windows systems is Unrestricted. For more information, see About Execution
Policies on the Microsoft Technet website.

Script Execution 20

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-5.1

AWS Tools for PowerShell User Guide

Because the PSModulePath includes the location of the AWS module's directory, the Get-Module
-ListAvailable cmdlet shows the module that you installed.

AWS.Tools

PS > Get-Module -ListAvailable

 Directory: /Users/username/.local/share/powershell/Modules

ModuleType Version Name PSEdition ExportedCommands
---------- ------- ---- --------- ----------------
Binary 3.3.563.1 AWS.Tools.Common Desk {Clear-
AWSHistory, Set-AWSHistoryConfiguration, Initialize-AWSDefaultConfiguration, Clear-
AWSDefaultConfigurat…

AWSPowerShell.NetCore

PS > Get-Module -ListAvailable

Directory: /Users/username/.local/share/powershell/Modules

ModuleType Version Name ExportedCommands
---------- ------- ---- ----------------
Binary 3.3.563.1 AWSPowerShell.NetCore

Configure a PowerShell Console to Use the AWS Tools for PowerShell
Core (AWSPowerShell.NetCore Only)

PowerShell Core typically loads modules automatically whenever you run a cmdlet in the
module. But this doesn't work for AWSPowerShell.NetCore because of its large size. To
start running AWSPowerShell.NetCore cmdlets, you must first run the Import-Module
AWSPowerShell.NetCore command. This isn't required for cmdlets in AWS.Tools modules.

Initialize Your PowerShell Session

When you start PowerShell on a Linux-based or macOS-based system after you have installed the
AWS Tools for PowerShell, you must run Initialize-AWSDefaultConfiguration to specify which AWS
access key to use. For more information about Initialize-AWSDefaultConfiguration, see
Using AWS Credentials.

Configuring the PowerShell Console 21

https://docs.aws.amazon.com/powershell/latest/reference/items/Initialize-AWSDefaultConfiguration.html

AWS Tools for PowerShell User Guide

Note

In earlier (before 3.3.96.0) releases of the AWS Tools for PowerShell, this cmdlet was
named Initialize-AWSDefaults.

Versioning

AWS releases new versions of the AWS Tools for PowerShell periodically to support new AWS
services and features. To determine the version of the AWS Tools for PowerShell that you have
installed, run the Get-AWSPowerShellVersion cmdlet.

PS > Get-AWSPowerShellVersion

Tools for PowerShell
Version 4.0.123.0
Copyright 2012-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Amazon Web Services SDK for .NET
Core Runtime Version 3.3.103.22
Copyright 2009-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Release notes: https://github.com/aws/aws-tools-for-powershell/blob/master/CHANGELOG.md

This software includes third party software subject to the following copyrights:
- Logging from log4net, Apache License
[http://logging.apache.org/log4net/license.html]

To see a list of the supported AWS services in the current version of the tools, add the -
ListServiceVersionInfo parameter to a Get-AWSPowerShellVersion cmdlet.

To determine the version of PowerShell that you are running, enter $PSVersionTable to view the
contents of the $PSVersionTable automatic variable.

PS > $PSVersionTable
Name Value
---- -----
PSVersion 6.2.2
PSEdition Core
GitCommitId 6.2.2

Versioning 22

https://docs.aws.amazon.com/powershell/latest/reference/items/Get-AWSPowerShellVersion.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-AWSPowerShellVersion.html
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-6

AWS Tools for PowerShell User Guide

OS Darwin 18.7.0 Darwin Kernel Version 18.7.0: Tue Aug 20
 16:57:14 PDT 2019; root:xnu-4903.271.2~2/RELEASE_X86_64
Platform Unix
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0…}
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.0.1
WSManStackVersion 3.0

Updating the AWS Tools for PowerShell on Linux or macOS

Periodically, as updated versions of the AWS Tools for PowerShell are released, you should update
the version that you're running locally.

Update the modularized AWS.Tools modules

To update your AWS.Tools modules to the latest version, run the following command:

PS > Update-AWSToolsModule -CleanUp

This command updates all of the currently installed AWS.Tools modules and, for those modules
that were successfully updated, removes the earlier versions.

Note

The Update-AWSToolsModule cmdlet downloads all modules from the PSRepository
named PSGallery (https://www.powershellgallery.com/) and considers it a trusted
source. Use the command Get-PSRepository -Name PSGallery for more information
about this PSRepository.

Update the Tools for PowerShell Core

Run the Get-AWSPowerShellVersion cmdlet to determine the version that you are running, and
compare that with the version of Tools for Windows PowerShell that is available on the PowerShell
Gallery website. We suggest you check every two to three weeks. Support for new commands and
AWS services is available only after you update to a version with that support.

Before you install a newer release of AWSPowerShell.NetCore, uninstall the existing module.
Close any open PowerShell sessions before you uninstall the existing package. Run the following
command to uninstall the package.

Updating the AWS Tools for PowerShell on Linux or macOS 23

https://www.powershellgallery.com/
https://www.powershellgallery.com/packages/AWSPowerShell
https://www.powershellgallery.com/packages/AWSPowerShell

AWS Tools for PowerShell User Guide

PS > Uninstall-Module -Name AWSPowerShell.NetCore -AllVersions

After the package is uninstalled, install the updated module by running the following command.

PS > Install-Module -Name AWSPowerShell.NetCore

After installation, run the command Import-Module AWSPowerShell.NetCore to load the
updated cmdlets into your PowerShell session.

Related Information

• Get started with the AWS Tools for Windows PowerShell

• Work with AWS services in the AWS Tools for PowerShell

Migrating from AWS Tools for PowerShell Version 3.3 to
Version 4

AWS Tools for PowerShell version 4 is a backward-compatible update to AWS Tools for PowerShell
version 3.3. It adds significant improvements while maintaining existing cmdlet behavior.

Your existing scripts should continue to work after upgrading to the new version, but we do
recommend that you test them thoroughly before upgrading your production environments.

This section describes the changes and explains how they might impact your scripts.

New Fully Modularized AWS.Tools Version

The AWSPowerShell.NetCore and AWSPowerShell packages were "monolithic". This meant that all
of the AWS services were supported in the same module, making it very large, and growing larger
as each new AWS service and feature was added. The new AWS.Tools package is broken up into
smaller modules that give you the flexibility to download and install only those that you require for
the AWS services that you use. The package includes a shared AWS.Tools.Common module that
is required by all of the other modules, and an AWS.Tools.Installer module that simplifies
installing, updating, and removing modules as needed.

This also enables auto-importing of cmdlets on first call, without having to first call Import-
module. However, to interact with the associated .NET objects before calling a cmdlet, you must
still call Import-Module to let PowerShell know about the relevant .NET types.

Related Information 24

AWS Tools for PowerShell User Guide

For example, the following command has a reference to Amazon.EC2.Model.Filter. This type
of reference can't trigger auto-importing, so you must call Import-Module first or the command
fails.

PS > $filter = [Amazon.EC2.Model.Filter]@{Name="vpc-id";Values="vpc-1234abcd"}
 InvalidOperation: Unable to find type [Amazon.EC2.Model.Filter].

PS > Import-Module AWS.Tools.EC2
PS > $filter = [Amazon.EC2.Model.Filter]@{Name="vpc-id";Values="vpc-1234abcd"}
PS > Get-EC2Instance -Filter $filter -Select Reservations.Instances.InstanceId
 i-0123456789abcdefg
 i-0123456789hijklmn

New Get-AWSService cmdlet

To help you discover the names of the modules for each AWS service in the AWS.Tools collection
of modules, you can use the Get-AWSService cmdlet.

PS > Get-AWSService
 Service : ACMPCA
 CmdletNounPrefix : PCA
 ModuleName : AWS.Tools.ACMPCA
 SDKAssemblyVersion : 3.3.101.56
 ServiceName : Certificate Manager Private Certificate Authority

 Service : AlexaForBusiness
 CmdletNounPrefix : ALXB
 ModuleName : AWS.Tools.AlexaForBusiness
 SDKAssemblyVersion : 3.3.106.26
 ServiceName : Alexa For Business
 ...

New -Select Parameter to Control the Object Returned by a Cmdlet

Most cmdlets in version 4 support a new -Select parameter. Each cmdlet calls the AWS service
APIs for you using the AWS SDK for .NET. Then the AWS Tools for PowerShell client converts the
response into an object that you can use in your PowerShell scripts and pipe to other commands.
Sometimes the final PowerShell object has more fields or properties in the original response than
you need, and other times you might want the object to include fields or properties of the response

New Get-AWSService cmdlet 25

AWS Tools for PowerShell User Guide

that are not there by default. The -Select parameter enables you to specify what is included in
the .NET object returned by the cmdlet.

For example, the Get-S3Object cmdlet invokes the Amazon S3 SDK operation ListObjects. That
operation returns a ListObjectsResponse object. However, by default, the Get-S3Object cmdlet
returns only the S3Objects element of the SDK response to the PowerShell user. In the following
example, that object is an array with two elements.

PS > Get-S3Object -BucketName mybucket

ETag : "01234567890123456789012345678901111"
BucketName : mybucket
Key : file1.txt
LastModified : 9/30/2019 1:31:40 PM
Owner : Amazon.S3.Model.Owner
Size : 568
StorageClass : STANDARD

ETag : "01234567890123456789012345678902222"
BucketName : mybucket
Key : file2.txt
LastModified : 7/15/2019 9:36:54 AM
Owner : Amazon.S3.Model.Owner
Size : 392
StorageClass : STANDARD

In AWS Tools for PowerShell version 4, you can specify -Select * to return the complete .NET
response object returned by the SDK API call.

PS > Get-S3Object -BucketName mybucket -Select *
 IsTruncated : False
 NextMarker :
 S3Objects : {file1.txt, file2.txt}
 Name : mybucket
 Prefix :
 MaxKeys : 1000
 CommonPrefixes : {}
 Delimiter :

You can also specify the path to the specific nested property you want. The following example
returns only the Key property of each element in the S3Objects array.

New -Select Parameter to Control the Object Returned by a Cmdlet 26

https://docs.aws.amazon.com/powershell/latest/reference/items/Get-S3Object.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/index.html?page=S3/MS3ListObjectsListObjectsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/index.html?page=S3/MS3ListObjectsListObjectsRequest.h

AWS Tools for PowerShell User Guide

PS > Get-S3Object -BucketName mybucket -Select S3Objects.Key
file1.txt
file2.txt

In certain situations it can be useful to return a cmdlet parameter. You can do this with -Select
^ParameterName. This feature supplants the -PassThru parameter, which is still available but
deprecated.

PS > Get-S3Object -BucketName mybucket -Select S3Objects.Key |
>> Write-S3ObjectTagSet -Select ^Key -BucketName mybucket -Tagging_TagSet @{ Key='key';
 Value='value'}
 file1.txt
 file2.txt

The reference topic for each cmdlet identifies whether it supports the -Select parameter.

More Consistent Limiting of the Number of Items in the Output

Earlier versions of AWS Tools for PowerShell enabled you to use the -MaxItems parameter to
specify the maximum number of objects returned in the final output.

This behavior is removed from AWS.Tools.

This behavior is deprecated in AWSPowerShell.NetCore and AWSPowerShell, and will be removed
from those versions in a future release.

If the underlying service API supports a MaxItems parameter, it's still available and functions as
the API specifies. But it no longer has the added behavior of limiting the number of items returned
in the output of the cmdlet.

To limit the number of items returned in the final output, pipe the output to the Select-Object
cmdlet and specify the -First n parameter, where n is the maximum number of items to include
in the final output.

PS > Get-S3ObjectV2 -BucketName BUCKET_NAME -Select S3Objects.Key | select -first 2
file1.txt
file2.txt

More Consistent Limiting of the Number of Items in the Output 27

https://docs.aws.amazon.com/powershell/latest/reference/

AWS Tools for PowerShell User Guide

Not all AWS services supported -MaxItems in the same way, so this removes that inconsistency
and the unexpected results that sometimes occurred. Also, -MaxItems combined with the new -
Select parameter could sometimes result in confusing results.

Easier to Use Stream Parameters

Parameters of type Stream or byte[] can now accept string, string[], or FileInfo values.

For example, you can use any of the following examples.

PS > Invoke-LMFunction -FunctionName MyTestFunction -PayloadStream '{
>> "some": "json"
>> }'

PS > Invoke-LMFunction -FunctionName MyTestFunction -PayloadStream (ls .\some.json)

PS > Invoke-LMFunction -FunctionName MyTestFunction -PayloadStream @('{', '"some":
 "json"', '}')

AWS Tools for PowerShell converts all strings to byte[] using UTF-8 encoding.

Extending the Pipe by Property Name

To make the user experience more consistent, you can now pass pipeline input by specifying the
property name for any parameter.

In the following example, we create a custom object with properties that have names that match
the parameter names of the target cmdlet. When the cmdlet runs, it automatically consumes those
properties as its parameters.

PS > [pscustomobject] @{ BucketName='myBucket'; Key='file1.txt'; PartNumber=1 } | Get-
S3ObjectMetadata

Note

Some properties supported this in earlier versions of AWS Tools for PowerShell. Version 4
makes this more consistent by enabling it for all parameters.

Easier to Use Stream Parameters 28

AWS Tools for PowerShell User Guide

Static Common Parameters

To improve consistency in version 4.0 of AWS Tools for PowerShell, all parameters are static.

In earlier versions of AWS Tools for PowerShell, some common parameters such as
AccessKey,SecretKey, ProfileName, or Region, were dynamic, while all other parameters
were static. This could create problems because PowerShell binds static parameters before dynamic
ones. For example, let's say you ran the following command.

PS > Get-EC2Region -Region us-west-2

Earlier versions of PowerShell bound the value us-west-2 to the -RegionName static parameter
instead of the -Region dynamic parameter. Likely, this could confuse users.

AWS.Tools Declares and Enforces Manadatory Parameters

The AWS.Tools.* modules now declare and enforce mandatory cmdlet parameters. When an
AWS Service declares that a parameter of an API is required, PowerShell prompts you for the
corresponding cmdlet parameter if you didn't specify it. This applies only to AWS.Tools. To ensure
backward compatibility, this does not apply to AWSPowerShell.NetCore or AWSPowerShell.

All Parameters Are Nullable

You can now assign $null to value type parameters (numbers and dates). This change should
not affect existing scripts. This enables you to bypass the prompt for a mandatory parameter.
Mandatory parameters are enforced in AWS.Tools only.

If you run the following example using version 4, it effectively bypasses client-side validation
because you provide a "value" for each mandatory parameter. However, the Amazon EC2 API
service call fails because the AWS service still requires that information.

PS > Get-EC2InstanceAttribute -InstanceId $null -Attribute $null
WARNING: You are passing $null as a value for parameter Attribute which is marked as
 required.
In case you believe this parameter was incorrectly marked as required, report this by
 opening
an issue at https://github.com/aws/aws-tools-for-powershell/issues .
WARNING: You are passing $null as a value for parameter InstanceId which is marked as
 required.

Static Common Parameters 29

https://docs.microsoft.com/dotnet/api/system.management.automation.idynamicparameters
https://github.com/aws/aws-tools-for-powershell/issues

AWS Tools for PowerShell User Guide

In case you believe this parameter was incorrectly marked as required, report this by
 opening
an issue at https://github.com/aws/aws-tools-for-powershell/issues .

Get-EC2InstanceAttribute : The request must contain the parameter instanceId

Removing Previously Deprecated Features

The following features were deprecated in previous releases of AWS Tools for PowerShell and are
removed in version 4:

• Removed the -Terminate parameter from the Stop-EC2Instance cmdlet. Use Remove-
EC2Instance instead.

• Removed the -ProfileName parameter from the Clear-AWSCredential cmdlet. Use Remove-
AWSCredentialProfile instead.

• Removed cmdlets Import-EC2Instance and Import-EC2Volume.

Removing Previously Deprecated Features 30

https://github.com/aws/aws-tools-for-powershell/issues

AWS Tools for PowerShell User Guide

Get started with the AWS Tools for Windows PowerShell

Some of the topics in this section describe the fundamentals of using the Tools for Windows
PowerShell after you have installed the tools. For example, they explain how to specify which
credentials and AWS Region the Tools for Windows PowerShell should use when interacting with
AWS.

Other topics in this section provide information about advanced ways that you can configure the
tools, your environment, and your projects.

Topics

• Configure tool authentication with AWS

• Specify AWS Regions

• Configure federated identity with the AWS Tools for PowerShell

• Cmdlet discovery and aliases

• Pipelining and $AWSHistory

• Credential and profile resolution

• Additional information about users and roles

• Using legacy credentials

Configure tool authentication with AWS

You must establish how your code authenticates with AWS when developing with AWS services.
There are different ways in which you can configure programmatic access to AWS resources,
depending on the environment and the AWS access available to you.

To see various methods of authentication for the Tools for PowerShell, see Authentication and
access in the AWS SDKs and Tools Reference Guide.

This topic assumes that a new user is developing locally, has not been given a method of
authentication by their employer, and will be using AWS IAM Identity Center to obtain temporary
credentials. If your environment doesn't fall under these assumptions, some of the information in
this topic might not apply to you, or some of the information might have already been given to
you.

Configure tool authentication 31

https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access.html

AWS Tools for PowerShell User Guide

Configuring this environment requires several steps, which are summarized as follows:

1. Enable and configure IAM Identity Center

2. Configure the Tools for PowerShell to use IAM Identity Center.

3. Start an AWS access portal session

Enable and configure IAM Identity Center

To use AWS IAM Identity Center, it must first be enabled and configured. To see details about how
to do this for PowerShell, look at Step 1 in the topic for IAM Identity Center authentication in the
AWS SDKs and Tools Reference Guide. Specifically, follow any necessary instructions under I do not
have established access through IAM Identity Center.

Configure the Tools for PowerShell to use IAM Identity Center.

Note

Starting with version 4.1.538 of the Tools for PowerShell, the recommended method
to configure SSO credentials and start an AWS access portal session is to use the
Initialize-AWSSSOConfiguration and Invoke-AWSSSOLogin cmdlets, as described
in this topic. If you don't have access to that version of the Tools for PowerShell (or later) or
can't use those cmdlets, you can still perform these tasks by using the AWS CLI. To find out
how, see Use the AWS CLI for portal login.

The following procedure updates the shared AWS config file with SSO information that the Tools
for PowerShell uses to obtain temporary credentials. As a consequence of this procedure, an AWS
access portal session is also started. If the shared config file already has SSO information and you
just want to know how to start an access portal session using the Tools for PowerShell, see the next
section in this topic, Start an AWS access portal session.

1. If you haven't already done so, open PowerShell and install the AWS Tools for PowerShell as
appropriate for your operating system and environment, including the common cmdlets. For
information about how to do this, see Installing the AWS Tools for PowerShell.

For example, if installing the modularized version of the Tools for PowerShell on Windows, you
would most likely run commands similar to the following:

Enable and configure IAM Identity Center 32

https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
http://docs.aws.amazon.com/powershell/latest/reference/index.html?page=Initialize-AWSSSOConfiguration.html&tocid=Initialize-AWSSSOConfiguration
http://docs.aws.amazon.com/powershell/latest/reference/index.html?page=Invoke-AWSSSOLogin.html&tocid=Invoke-AWSSSOLogin

AWS Tools for PowerShell User Guide

Install-Module -Name AWS.Tools.Installer
Install-AWSToolsModule AWS.Tools.Common

2. Run the following command. Replace the example property values with values from your
IAM Identity Center configuration. For information about these properties and how to find
them, see IAM Identity Center credential provider settings in the AWS SDKs and Tools Reference
Guide.

$params = @{
 ProfileName = 'my-sso-profile'
 AccountId = '111122223333'
 RoleName = 'SamplePermissionSet'
 SessionName = 'my-sso-session'
 StartUrl = 'https://provided-domain.awsapps.com/start'
 SSORegion = 'us-west-2'
 RegistrationScopes = 'sso:account:access'
};
Initialize-AWSSSOConfiguration @params

Alternatively, you can simply use the cmdlet by itself, Initialize-AWSSSOConfiguration,
and the Tools for PowerShell prompts you for the property values.

Considerations for certain property values:

• If you simply followed the instructions to enable and configure IAM Identity Center, the
value for -RoleName might be PowerUserAccess. But if you created an IAM Identity
Center permission set specifically for PowerShell work, use that instead.

• Be sure to use the AWS Region where you have configured IAM Identity Center.

3. At this point, the shared AWS config file contains a profile called my-sso-profile with a
set of configuration values that can be referenced from the Tools for PowerShell. To find the
location of this file, see Location of the shared files in the AWS SDKs and Tools Reference Guide.

The Tools for PowerShell uses the profile's SSO token provider to acquire credentials before
sending requests to AWS. The sso_role_name value, which is an IAM role connected to
an IAM Identity Center permission set, should allow access to the AWS services used in your
application.

The following sample shows the profile that was created by using the command shown
above. Some of the property values and their order might be different in your actual profile.

Configure the Tools for PowerShell to use IAM Identity Center. 33

https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html#feature-sso-credentials-profile
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html

AWS Tools for PowerShell User Guide

The profile's sso-session property refers to the section named my-sso-session, which
contains settings to initiate an AWS access portal session.

[profile my-sso-profile]
sso_account_id=111122223333
sso_role_name=SamplePermissionSet
sso_session=my-sso-session

[sso-session my-sso-session]
sso_region=us-west-2
sso_registration_scopes=sso:account:access
sso_start_url=https://provided-domain.awsapps.com/start/

4. If you already have an active AWS access portal session, the Tools for PowerShell informs you
that you are already logged in.

If that's not the case, the Tools for PowerShell attempts to automatically open the SSO
authorization page in your default web browser. Follow the prompts in your browser, which
might include an SSO authorization code, username and password, and permission to access
AWS IAM Identity Center accounts and permission sets.

The Tools for PowerShell informs you that SSO login was successful.

Start an AWS access portal session

Before running commands that accesses AWS services, you need an active AWS access portal
session so that the Tools for PowerShell can use IAM Identity Center authentication to resolve
credentials. To sign in to the AWS access portal, run the following command in PowerShell, where
-ProfileName my-sso-profile is the name of the profile that was created in the shared
config file when you followed the procedure in the previous section of this topic.

Invoke-AWSSSOLogin -ProfileName my-sso-profile

If you already have an active AWS access portal session, the Tools for PowerShell informs you that
you are already logged in.

If that's not the case, the Tools for PowerShell attempts to automatically open the SSO
authorization page in your default web browser. Follow the prompts in your browser, which might

Start an AWS access portal session 34

AWS Tools for PowerShell User Guide

include an SSO authorization code, username and password, and permission to access AWS IAM
Identity Center accounts and permission sets.

The Tools for PowerShell informs you that SSO login was successful.

To test if you already have an active session, run the following command after installing or
importing the AWS.Tools.SecurityToken module as needed.

Get-STSCallerIdentity -ProfileName my-sso-profile

The response to the Get-STSCallerIdentity cmdlet reports the IAM Identity Center account
and permission set configured in the shared config file.

Example

The following is an example of how to use IAM Identity Center with the Tools for PowerShell. It
assumes the following:

• You have enabled IAM Identity Center and configured it as described previously in this topic. The
SSO properties are in the my-sso-profile profile, which was configured earlier in this topic.

• When you log in through the Initialize-AWSSSOConfiguration or Invoke-AWSSSOLogin
cmdlets, the user has at least read-only permissions for Amazon S3.

• Some S3 buckets are available for that user to view.

Install or import the AWS.Tools.S3 module as needed and then use the following PowerShell
command to display a list of the S3 buckets.

Get-S3Bucket -ProfileName my-sso-profile

Additional information

• For more options on authentication for the Tools for PowerShell, such as the use of profiles and
environment variables, see the configuration chapter in the AWS SDKs and Tools Reference Guide.

• Some commands require an AWS Region to be specified. There are a number of ways to do
so, including the -Region cmdlet option, the [default] profile, and the AWS_REGION
environment variable. For more information, see Specify AWS Regions in this guide and AWS
Region in the AWS SDKs and Tools Reference Guide.

Example 35

https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html

AWS Tools for PowerShell User Guide

• To learn more about best practices, see Security best practices in IAM in the IAM User Guide.

• To create short-term AWS credentials, see Temporary Security Credentials in the IAM User Guide.

• To learn about other credential providers, see Standardized credential providers in the AWS SDKs
and Tools Reference Guide.

Topics

• Use the AWS CLI for portal login

Use the AWS CLI for portal login

Starting with version 4.1.538 of the Tools for PowerShell, the recommended method to
configure SSO credentials and start an AWS access portal session is to use the Initialize-
AWSSSOConfiguration and Invoke-AWSSSOLogin cmdlets, as described in Configure tool
authentication with AWS. If you don't have access to that version of the Tools for PowerShell (or
later) or can't use those cmdlets, you can still perform these tasks by using the AWS CLI.

Configure the Tools for PowerShell to use IAM Identity Center through the AWS
CLI.

If you haven't already done so, be sure to Enable and configure IAM Identity Center before you
proceed.

Information about how to configure the Tools for PowerShell to use IAM Identity Center through
the AWS CLI is in Step 2 in the topic for IAM Identity Center authentication in the AWS SDKs and
Tools Reference Guide. After you complete this configuration, your system should contain the
following elements:

• The AWS CLI, which you use to start an AWS access portal session before you run your
application.

• The shared AWS config file that contains a [default] profile with a set of configuration
values that can be referenced from the Tools for PowerShell. To find the location of this file, see
Location of the shared files in the AWS SDKs and Tools Reference Guide. The Tools for PowerShell
uses the profile's SSO token provider to acquire credentials before sending requests to AWS. The
sso_role_name value, which is an IAM role connected to an IAM Identity Center permission set,
should allow access to the AWS services used in your application.

Use the AWS CLI 36

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html
http://docs.aws.amazon.com/powershell/latest/reference/index.html?page=Initialize-AWSSSOConfiguration.html&tocid=Initialize-AWSSSOConfiguration
http://docs.aws.amazon.com/powershell/latest/reference/index.html?page=Initialize-AWSSSOConfiguration.html&tocid=Initialize-AWSSSOConfiguration
http://docs.aws.amazon.com/powershell/latest/reference/index.html?page=Invoke-AWSSSOLogin.html&tocid=Invoke-AWSSSOLogin
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#file-format-profile
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html

AWS Tools for PowerShell User Guide

The following sample config file shows a [default] profile set up with an SSO token provider.
The profile's sso_session setting refers to the named sso-session section. The sso-
session section contains settings to initiate an AWS access portal session.

[default]
sso_session = my-sso
sso_account_id = 111122223333
sso_role_name = SampleRole
region = us-east-1
output = json

[sso-session my-sso]
sso_region = us-east-1
sso_start_url = https://provided-domain.awsapps.com/start
sso_registration_scopes = sso:account:access

Important

Your PowerShell session must have the following modules installed and imported so that
SSO resolution can work:

• AWS.Tools.SSO

• AWS.Tools.SSOOIDC

If you're using an older version of the Tools for PowerShell and you don't have these
modules, you will get an error similar to the following: "Assembly AWSSDK.SSOOIDC could
not be found...".

Start an AWS access portal session

Before running commands that accesses AWS services, you need an active AWS access portal
session so that the Tools for Windows PowerShell can use IAM Identity Center authentication to
resolve credentials. Depending on your configured session lengths, your access will eventually
expire and the Tools for Windows PowerShell will encounter an authentication error. To sign in to
the AWS access portal, run the following command in the AWS CLI.

Use the AWS CLI 37

AWS Tools for PowerShell User Guide

aws sso login

Since you are using the [default] profile, you do not need to call the command with the --
profile option. If your SSO token provider configuration is using a named profile, the command
is aws sso login --profile named-profile instead. For more information about named
profiles, see the Profiles section in the AWS SDKs and Tools Reference Guide.

To test if you already have an active session, run the following AWS CLI command (with the same
consideration for named profile):

aws sts get-caller-identity

The response to this command should report the IAM Identity Center account and permission set
configured in the shared config file.

Note

If you already have an active AWS access portal session and run aws sso login, you will
not be required to provide credentials.
The sign-in process might prompt you to allow the AWS CLI access to your data. Because
the AWS CLI is built on top of the SDK for Python, permission messages may contain
variations of the botocore name.

Example

The following is an example of how to use IAM Identity Center with the Tools for PowerShell. It
assumes the following:

• You have enabled IAM Identity Center and configured it as described previously in this topic. The
SSO properties are in the [default] profile.

• When you log in through the AWS CLI by using aws sso login, that user has at least read-only
permissions for Amazon S3.

• Some S3 buckets are available for that user to view.

Use the following PowerShell commands to display a list of the S3 buckets:

Use the AWS CLI 38

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#file-format-profile

AWS Tools for PowerShell User Guide

Install-Module AWS.Tools.Installer
Install-AWSToolsModule S3
And if using an older version of the AWS Tools for PowerShell:
Install-AWSToolsModule SSO, SSOOIDC

In older versions of the AWS Tools for PowerShell, we're not invoking a cmdlet from
 these modules directly,
so we must import them explicitly:
Import-Module AWS.Tools.SSO
Import-Module AWS.Tools.SSOOIDC

Older versions of the AWS Tools for PowerShell don't support the SSO login flow, so
 login with the CLI
aws sso login

Now we can invoke cmdlets using the SSO profile
Get-S3Bucket

As mentioned above, since you are using the [default] profile, you do not need to call the Get-
S3Bucket cmdlet with the -ProfileName option. If your SSO token provider configuration
is using a named profile, the command is Get-S3Bucket -ProfileName named-profile.
For more information about named profiles, see the Profiles section in the AWS SDKs and Tools
Reference Guide.

Additional information

• For more options on authentication for the Tools for PowerShell, such as the use of profiles and
environment variables, see the configuration chapter in the AWS SDKs and Tools Reference Guide.

• Some commands require an AWS Region to be specified. There are a number of ways to do
so, including the -Region cmdlet option, the [default] profile, and the AWS_REGION
environment variable. For more information, see Specify AWS Regions in this guide and AWS
Region in the AWS SDKs and Tools Reference Guide.

• To learn more about best practices, see Security best practices in IAM in the IAM User Guide.

• To create short-term AWS credentials, see Temporary Security Credentials in the IAM User Guide.

• To learn about other credential providers, see Standardized credential providers in the AWS SDKs
and Tools Reference Guide.

Use the AWS CLI 39

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#file-format-profile
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html

AWS Tools for PowerShell User Guide

Specify AWS Regions

There are two ways to specify the AWS Region to use when running AWS Tools for PowerShell
commands:

• Use the -Region common parameter on individual commands.

• Use the Set-DefaultAWSRegion command to set a default Region for all commands.

Many AWS cmdlets fail if the Tools for Windows PowerShell can't figure out what Region to
use. Exceptions include cmdlets for Amazon S3, Amazon SES, and AWS Identity and Access
Management, which automatically default to a global endpoint.

To specify the region for a single AWS command

Add the -Region parameter to your command, such as the following.

PS > Get-EC2Image -Region us-west-2

To set a default region for all AWS CLI commands in the current session

From the PowerShell command prompt, type the following command.

PS > Set-DefaultAWSRegion -Region us-west-2

Note

This setting persists only for the current session. To apply the setting to all of your
PowerShell sessions, add this command to your PowerShell profile as you did for the
Import-Module command.

To view the current default region for all AWS CLI commands

From the PowerShell command prompt, type the following command.

PS > Get-DefaultAWSRegion

Region Name IsShellDefault
------ ---- --------------

Specify AWS Regions 40

AWS Tools for PowerShell User Guide

us-west-2 US West (Oregon) True

To clear the current default Region for all AWS CLI commands

From the PowerShell command prompt, type the following command.

PS > Clear-DefaultAWSRegion

To view a list of all available AWS Regions

From the PowerShell command prompt, type the following command. The third column in the
sample output identifies which Region is the default for your current session.

PS > Get-AWSRegion

Region Name IsShellDefault
------ ---- --------------
ap-east-1 Asia Pacific (Hong Kong) False
ap-northeast-1 Asia Pacific (Tokyo) False
...
us-east-2 US East (Ohio) False
us-west-1 US West (N. California) False
us-west-2 US West (Oregon) True
...

Note

Some Regions might be supported but not included in the output of the Get-AWSRegion
cmdlet. For example, this is sometimes true of Regions that are not yet global. If you're not
able to specify a Region by adding the -Region parameter to a command, try specifying
the Region in a custom endpoint instead, as shown in the following section.

Specifying a Custom or Nonstandard Endpoint

Specify a custom endpoint as a URL by adding the -EndpointUrl common parameter to your
Tools for Windows PowerShell command, in the following sample format.

PS > Some-AWS-PowerShellCmdlet -EndpointUrl "custom endpoint URL" -Other -Parameters

Specifying a Custom or Nonstandard Endpoint 41

AWS Tools for PowerShell User Guide

The following is an example using the Get-EC2Instance cmdlet. The custom endpoint is in the
us-west-2, or US West (Oregon) Region in this example, but you can use any other supported
AWS Region, including regions that are not enumerated by Get-AWSRegion.

PS > Get-EC2Instance -EndpointUrl "https://service-custom-url.us-west-2.amazonaws.com"
 -InstanceID "i-0555a30a2000000e1"

Additional information

For additional information about AWS Regions, see AWS Region in the AWS SDKs and Tools
Reference Guide.

Configure federated identity with the AWS Tools for
PowerShell

To let users in your organization access AWS resources, you must configure a standard and
repeatable authentication method for purposes of security, auditability, compliance, and the
capability to support role and account separation. Although it's common to provide users with
the ability to access AWS APIs, without federated API access, you would also have to create AWS
Identity and Access Management (IAM) users, which defeats the purpose of using federation.
This topic describes SAML (Security Assertion Markup Language) support in the AWS Tools for
PowerShell that eases your federated access solution.

SAML support in the AWS Tools for PowerShell lets you provide your users federated access to
AWS services. SAML is an XML-based, open-standard format for transmitting user authentication
and authorization data between services; in particular, between an identity provider (such as
Active Directory Federation Services), and a service provider (such as AWS). For more information
about SAML and how it works, see SAML on Wikipedia, or SAML Technical Specifications at the
Organization for the Advancement of Structured Information Standards (OASIS) website. SAML
support in the AWS Tools for PowerShell is compatible with SAML 2.0.

Prerequisites

You must have the following in place before you try to use SAML support for the first time.

• A federated identity solution that is correctly integrated with your AWS account for console
access by using only your organizational credentials. For more information about how to do this
specifically for Active Directory Federation Services, see About SAML 2.0 Federation in the IAM

Additional information 42

https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html
http://technet.microsoft.com/library/bb897402.aspx
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
http://saml.xml.org/saml-specifications
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html

AWS Tools for PowerShell User Guide

User Guide, and the blog post, Enabling Federation to AWS Using Windows Active Directory,
AD FS, and SAML 2.0. Although the blog post covers AD FS 2.0, the steps are similar if you are
running AD FS 3.0.

• Version 3.1.31.0 or newer of the AWS Tools for PowerShell installed on your local workstation.

How an Identity-Federated User Gets Federated Access to AWS Service
APIs

The following process describes, at a high level, how an Active Directory (AD) user is federated by
AD FS to gain access to AWS resources.

1. The client on federated user's computer authenticates against AD FS.

2. If authentication succeeds, AD FS sends the user a SAML assertion.

How an Identity-Federated User Gets Federated Access to AWS Service APIs 43

https://aws.amazon.com/blogs/security/enabling-federation-to-aws-using-windows-active-directory-adfs-and-saml-2-0/
https://aws.amazon.com/blogs/security/enabling-federation-to-aws-using-windows-active-directory-adfs-and-saml-2-0/

AWS Tools for PowerShell User Guide

3. The user's client sends the SAML assertion to the AWS Security Token Service (STS) as part of a
SAML federation request.

4. STS returns a SAML response that contains AWS temporary credentials for a role the user can
assume.

5. The user accesses AWS service APIs by including those temporary credentials in request made by
AWS Tools for PowerShell.

How SAML Support Works in the AWS Tools for PowerShell

This section describes how AWS Tools for PowerShell cmdlets enable configuration of SAML-based
identity federation for users.

1. AWS Tools for PowerShell authenticates against AD FS by using the Windows user's current
credentials, or interactively, when the user tries to run a cmdlet that requires credentials to call
into AWS.

2. AD FS authenticates the user.

3. AD FS generates a SAML 2.0 authentication response that includes an assertion; the purpose of
the assertion is to identify and provide information about the user. AWS Tools for PowerShell
extracts the list of the user's authorized roles from the SAML assertion.

How SAML Support Works in the AWS Tools for PowerShell 44

AWS Tools for PowerShell User Guide

4. AWS Tools for PowerShell forwards the SAML request, including the requested role's Amazon
Resource Names (ARN), to STS by making the AssumeRoleWithSAMLRequest API call.

5. If the SAML request is valid, STS returns a response that contains the AWS AccessKeyId,
SecretAccessKey, and SessionToken. These credentials last for 3,600 seconds (1 hour).

6. The user now has valid credentials to work with any AWS service APIs that the user's role is
authorized to access. AWS Tools for PowerShell automatically applies these credentials for any
subsequent AWS API calls, and renews them automatically when they expire.

Note

When the credentials expire, and new credentials are required, AWS Tools for PowerShell
automatically reauthenticates with AD FS, and obtains new credentials for a subsequent
hour. For users of domain-joined accounts, this process occurs silently. For accounts
that are not domain-joined, AWS Tools for PowerShell prompts users to enter their
credentials before they can reauthenticate.

How to Use the PowerShell SAML Configuration Cmdlets

AWS Tools for PowerShell includes two new cmdlets that provide SAML support.

• Set-AWSSamlEndpoint configures your AD FS endpoint, assigns a friendly name to the
endpoint, and optionally describes the authentication type of the endpoint.

• Set-AWSSamlRoleProfile creates or edits a user account profile that you want to associate
with an AD FS endpoint, identified by specifying the friendly name you provided to the Set-
AWSSamlEndpoint cmdlet. Each role profile maps to a single role that a user is authorized to
perform.

Just as with AWS credential profiles, you assign a friendly name to the role profile. You can
use the same friendly name with the Set-AWSCredential cmdlet, or as the value of the -
ProfileName parameter for any cmdlet that invokes AWS service APIs.

Open a new AWS Tools for PowerShell session. If you are running PowerShell 3.0 or newer, the
AWS Tools for PowerShell module is automatically imported when you run any of its cmdlets. If
you are running PowerShell 2.0, you must import the module manually by running the ``Import-
Module`` cmdlet, as shown in the following example.

How to Use the PowerShell SAML Configuration Cmdlets 45

AWS Tools for PowerShell User Guide

PS > Import-Module "C:\Program Files (x86)\AWS Tools\PowerShell\AWSPowerShell
\AWSPowerShell.psd1"

How to Run the Set-AWSSamlEndpoint and Set-AWSSamlRoleProfile Cmdlets

1. First, configure the endpoint settings for the AD FS system. The simplest way to do this is to
store the endpoint in a variable, as shown in this step. Be sure to replace the placeholder account
IDs and AD FS host name with your own account IDs and AD FS host name. Specify the AD FS
host name in the Endpoint parameter.

PS > $endpoint = "https://adfs.example.com/adfs/ls/IdpInitiatedSignOn.aspx?
loginToRp=urn:amazon:webservices"

2. To create the endpoint settings, run the Set-AWSSamlEndpoint cmdlet, specifying the
correct value for the AuthenticationType parameter. Valid values include Basic, Digest,
Kerberos, Negotiate, and NTLM. If you do not specify this parameter, the default value is
Kerberos.

PS > $epName = Set-AWSSamlEndpoint -Endpoint $endpoint -StoreAs ADFS-Demo -
AuthenticationType NTLM

The cmdlet returns the friendly name you assigned by using the -StoreAs parameter, so you
can use it when you run Set-AWSSamlRoleProfile in the next line.

3. Now, run the Set-AWSSamlRoleProfile cmdlet to authenticate with the AD FS identity
provider and get the set of roles (in the SAML assertion) that the user is authorized to perform.

The Set-AWSSamlRoleProfile cmdlet uses the returned set of roles to either prompt the
user to select a role to associate with the specified profile, or validate that role data provided in
parameters is present (if not, the user is prompted to choose). If the user is authorized for only
one role, the cmdlet associates the role with the profile automatically, without prompting the
user. There is no need to provide a credential to set up a profile for domain-joined usage.

PS > Set-AWSSamlRoleProfile -StoreAs SAMLDemoProfile -EndpointName $epName

Alternatively, for non-domain-joined accounts, you can provide Active Directory credentials,
and then select an AWS role to which the user has access, as shown in the following line. This

How to Use the PowerShell SAML Configuration Cmdlets 46

AWS Tools for PowerShell User Guide

is useful if you have different Active Directory user accounts to differentiate roles within your
organization (for example, administration functions).

PS > $credential = Get-Credential -Message "Enter the domain credentials for the
 endpoint"
PS > Set-AWSSamlRoleProfile -EndpointName $epName -NetworkCredential $credential -
StoreAs SAMLDemoProfile

4. In either case, the Set-AWSSamlRoleProfile cmdlet prompts you to choose which role should
be stored in the profile. The following example shows two available roles: ADFS-Dev, and
ADFS-Production. The IAM roles are associated with your AD login credentials by the AD FS
administrator.

Select Role
Select the role to be assumed when this profile is active
[1] 1 - ADFS-Dev [2] 2 - ADFS-Production [?] Help (default is "1"):

Alternatively, you can specify a role without the prompt, by entering the RoleARN,
PrincipalARN, and optional NetworkCredential parameters. If the specified role is not
listed in the assertion returned by authentication, the user is prompted to choose from available
roles.

PS > $params = @{ "NetworkCredential"=$credential,
 "PrincipalARN"="{arn:aws:iam::012345678912:saml-provider/ADFS}",
 "RoleARN"="{arn:aws:iam::012345678912:role/ADFS-Dev}"
}
PS > $epName | Set-AWSSamlRoleProfile @params -StoreAs SAMLDemoProfile1 -Verbose

5. You can create profiles for all roles in a single command by adding the StoreAllRoles
parameter, as shown in the following code. Note that the role name is used as the profile name.

PS > Set-AWSSamlRoleProfile -EndpointName $epName -StoreAllRoles
ADFS-Dev
ADFS-Production

How to Use Role Profiles to Run Cmdlets that Require AWS Credentials

To run cmdlets that require AWS credentials, you can use role profiles defined in the AWS shared
credential file. Provide the name of a role profile to Set-AWSCredential (or as the value for

How to Use the PowerShell SAML Configuration Cmdlets 47

AWS Tools for PowerShell User Guide

any ProfileName parameter in the AWS Tools for PowerShell) to get temporary AWS credentials
automatically for the role that is described in the profile.

Although you use only one role profile at a time, you can switch between profiles within a shell
session. The Set-AWSCredential cmdlet does not authenticate and get credentials when you run
it by itself; the cmdlet records that you want to use a specified role profile. Until you run a cmdlet
that requires AWS credentials, no authentication or request for credentials occurs.

You can now use the temporary AWS credentials that you obtained with the SAMLDemoProfile
profile to work with AWS service APIs. The following sections show examples of how to use role
profiles.

Example 1: Set a Default Role with Set-AWSCredential

This example sets a default role for a AWS Tools for PowerShell session by using Set-
AWSCredential. Then, you can run cmdlets that require credentials, and are authorized by the
specified role. This example lists all Amazon Elastic Compute Cloud instances in the US West
(Oregon) Region that are associated with the profile you specified with the Set-AWSCredential
cmdlet.

PS > Set-AWSCredential -ProfileName SAMLDemoProfile
PS > Get-EC2Instance -Region us-west-2 | Format-Table -Property Instances,GroupNames

Instances GroupNames
--------- ----------
{TestInstance1} {default}
{TestInstance2} {}
{TestInstance3} {launch-wizard-6}
{TestInstance4} {default}
{TestInstance5} {}
{TestInstance6} {AWS-OpsWorks-Default-
Server}

Example 2: Change Role Profiles During a PowerShell Session

This example lists all available Amazon S3 buckets in the AWS account of the role associated
with the SAMLDemoProfile profile. The example shows that although you might have been
using another profile earlier in your AWS Tools for PowerShell session, you can change profiles by
specifying a different value for the -ProfileName parameter with cmdlets that support it. This is
a common task for administrators who manage Amazon S3 from the PowerShell command line.

How to Use the PowerShell SAML Configuration Cmdlets 48

AWS Tools for PowerShell User Guide

PS > Get-S3Bucket -ProfileName SAMLDemoProfile

CreationDate BucketName
------------ ----------
7/25/2013 3:16:56 AM mybucket1
4/15/2015 12:46:50 AM mybucket2
4/15/2015 6:15:53 AM mybucket3
1/12/2015 11:20:16 PM mybucket4

Note that the Get-S3Bucket cmdlet specifies the name of the profile created by running the
Set-AWSSamlRoleProfile cmdlet. This command could be useful if you had set a role profile
earlier in your session (for example, by running the Set-AWSCredential cmdlet) and wanted to
use a different role profile for the Get-S3Bucket cmdlet. The profile manager makes temporary
credentials available to the Get-S3Bucket cmdlet.

Although the credentials expire after 1 hour (a limit enforced by STS), AWS Tools for PowerShell
automatically refreshes the credentials by requesting a new SAML assertion when the tool detects
that the current credentials have expired.

For domain-joined users, this process occurs without interruption, because the current user's
Windows identity is used during authentication. For non-domain-joined user accounts, AWS Tools
for PowerShell shows a PowerShell credential prompt requesting the user password. The user
provides credentials that are used to reauthenticate the user and get a new assertion.

Example 3: Get Instances in a Region

The following example lists all Amazon EC2 instances in the Asia Pacific (Sydney) Region that are
associated with the account used by the ADFS-Production profile. This is a useful command for
returning all Amazon EC2 instances in a region.

PS > (Get-Ec2Instance -ProfileName ADFS-Production -Region ap-southeast-2).Instances |
 Select InstanceType, @{Name="Servername";Expression={$_.tags | where key -eq "Name" |
 Select Value -Expand Value}}

 InstanceType Servername
 ------------ ----------
 t2.small DC2
 t1.micro NAT1
 t1.micro RDGW1
 t1.micro RDGW2
 t1.micro NAT2

How to Use the PowerShell SAML Configuration Cmdlets 49

AWS Tools for PowerShell User Guide

 t2.small DC1
 t2.micro BUILD

Additional Reading

For general information about how to implement federated API access, see How to Implement a
General Solution for Federated API/CLI Access Using SAML 2.0.

For support questions or comments, visit the AWS Developer Forums for PowerShell Scripting or
.NET Development.

Cmdlet discovery and aliases

This section shows you how to list services that are supported by the AWS Tools for PowerShell,
how to show the set of cmdlets provided by the AWS Tools for PowerShell in support of those
services, and how to find alternative cmdlet names (also called aliases) to access those services.

Cmdlet Discovery

All AWS service operations (or APIs) are documented in the API Reference Guide for each service.
For example, see the IAM API Reference. There is, in most cases, a one-to-one correspondence
between an AWS service API and an AWS PowerShell cmdlet. To get the cmdlet name that
corresponds to an AWS service API name, run the AWS Get-AWSCmdletName cmdlet with the -
ApiOperation parameter and the AWS service API name. For example, to get all possible cmdlet
names that are based on any available DescribeInstances AWS service API, run the following
command:

PS > Get-AWSCmdletName -ApiOperation DescribeInstances

CmdletName ServiceOperation ServiceName CmdletNounPrefix
---------- ---------------- ----------- ----------------
Get-EC2Instance DescribeInstances Amazon Elastic Compute Cloud EC2
Get-GMLInstance DescribeInstances Amazon GameLift Service GML

The -ApiOperation parameter is the default parameter, so you can omit the parameter name.
The following example is equivalent to the previous one:

PS > Get-AWSCmdletName DescribeInstances

Additional Reading 50

https://aws.amazon.com/blogs/security/how-to-implement-a-general-solution-for-federated-apicli-access-using-saml-2-0/
https://aws.amazon.com/blogs/security/how-to-implement-a-general-solution-for-federated-apicli-access-using-saml-2-0/
https://forums.aws.amazon.com/forum.jspa?forumID=149
https://forums.aws.amazon.com/forum.jspa?forumID=61
https://docs.aws.amazon.com/IAM/latest/APIReference/

AWS Tools for PowerShell User Guide

If you know the names of both the API and the service, you can include the -Service parameter
along with either the cmdlet noun prefix or part of the AWS service name. For example, the
cmdlet noun prefix for Amazon EC2 is EC2. To get the cmdlet name that corresponds to the
DescribeInstances API in the Amazon EC2 service, run one of the following commands. They
are all result in the same output:

PS > Get-AWSCmdletName -ApiOperation DescribeInstances -Service EC2
PS > Get-AWSCmdletName -ApiOperation DescribeInstances -Service Compute
PS > Get-AWSCmdletName -ApiOperation DescribeInstances -Service "Compute Cloud"

CmdletName ServiceOperation ServiceName CmdletNounPrefix
---------- ---------------- ----------- ----------------
Get-EC2Instance DescribeInstances Amazon Elastic Compute Cloud EC2

Parameter values in these commands are case-insensitive.

If you do not know the name of either the desired AWS service API or the AWS service, you can use
the -ApiOperation parameter, along with the pattern to match, and the -MatchWithRegex
parameter. For example, to get all available cmdlet names that contain SecurityGroup, run the
following command:

PS > Get-AWSCmdletName -ApiOperation SecurityGroup -MatchWithRegex

CmdletName ServiceOperation
 ServiceName CmdletNounPrefix
---------- ----------------
 ----------- ----------------
Approve-ECCacheSecurityGroupIngress AuthorizeCacheSecurityGroupIngress
 Amazon ElastiCache EC
Get-ECCacheSecurityGroup DescribeCacheSecurityGroups
 Amazon ElastiCache EC
New-ECCacheSecurityGroup CreateCacheSecurityGroup
 Amazon ElastiCache EC
Remove-ECCacheSecurityGroup DeleteCacheSecurityGroup
 Amazon ElastiCache EC
Revoke-ECCacheSecurityGroupIngress RevokeCacheSecurityGroupIngress
 Amazon ElastiCache EC
Add-EC2SecurityGroupToClientVpnTargetNetwrk
 ApplySecurityGroupsToClientVpnTargetNetwork Amazon Elastic Compute Cloud EC2
Get-EC2SecurityGroup DescribeSecurityGroups
 Amazon Elastic Compute Cloud EC2

Cmdlet Discovery 51

AWS Tools for PowerShell User Guide

Get-EC2SecurityGroupReference DescribeSecurityGroupReferences
 Amazon Elastic Compute Cloud EC2
Get-EC2StaleSecurityGroup DescribeStaleSecurityGroups
 Amazon Elastic Compute Cloud EC2
Grant-EC2SecurityGroupEgress AuthorizeSecurityGroupEgress
 Amazon Elastic Compute Cloud EC2
Grant-EC2SecurityGroupIngress AuthorizeSecurityGroupIngress
 Amazon Elastic Compute Cloud EC2
New-EC2SecurityGroup CreateSecurityGroup
 Amazon Elastic Compute Cloud EC2
Remove-EC2SecurityGroup DeleteSecurityGroup
 Amazon Elastic Compute Cloud EC2
Revoke-EC2SecurityGroupEgress RevokeSecurityGroupEgress
 Amazon Elastic Compute Cloud EC2
Revoke-EC2SecurityGroupIngress RevokeSecurityGroupIngress
 Amazon Elastic Compute Cloud EC2
Update-EC2SecurityGroupRuleEgressDescription UpdateSecurityGroupRuleDescriptionsEgress
 Amazon Elastic Compute Cloud EC2
Update-EC2SecurityGroupRuleIngressDescription
 UpdateSecurityGroupRuleDescriptionsIngress Amazon Elastic Compute Cloud EC2
Edit-EFSMountTargetSecurityGroup ModifyMountTargetSecurityGroups
 Amazon Elastic File System EFS
Get-EFSMountTargetSecurityGroup DescribeMountTargetSecurityGroups
 Amazon Elastic File System EFS
Join-ELBSecurityGroupToLoadBalancer ApplySecurityGroupsToLoadBalancer
 Elastic Load Balancing ELB
Set-ELB2SecurityGroup SetSecurityGroups
 Elastic Load Balancing V2 ELB2
Enable-RDSDBSecurityGroupIngress AuthorizeDBSecurityGroupIngress
 Amazon Relational Database Service RDS
Get-RDSDBSecurityGroup DescribeDBSecurityGroups
 Amazon Relational Database Service RDS
New-RDSDBSecurityGroup CreateDBSecurityGroup
 Amazon Relational Database Service RDS
Remove-RDSDBSecurityGroup DeleteDBSecurityGroup
 Amazon Relational Database Service RDS
Revoke-RDSDBSecurityGroupIngress RevokeDBSecurityGroupIngress
 Amazon Relational Database Service RDS
Approve-RSClusterSecurityGroupIngress AuthorizeClusterSecurityGroupIngress
 Amazon Redshift RS
Get-RSClusterSecurityGroup DescribeClusterSecurityGroups
 Amazon Redshift RS
New-RSClusterSecurityGroup CreateClusterSecurityGroup
 Amazon Redshift RS

Cmdlet Discovery 52

AWS Tools for PowerShell User Guide

Remove-RSClusterSecurityGroup DeleteClusterSecurityGroup
 Amazon Redshift RS
Revoke-RSClusterSecurityGroupIngress RevokeClusterSecurityGroupIngress
 Amazon Redshift RS

If you know the name of the AWS service but not the AWS service API, include both the -
MatchWithRegex parameter and the -Service parameter to scope the search down to a single
service. For example, to get all cmdlet names that contain SecurityGroup in only the Amazon
EC2 service, run the following command

PS > Get-AWSCmdletName -ApiOperation SecurityGroup -MatchWithRegex -Service EC2

CmdletName ServiceOperation
 ServiceName CmdletNounPrefix
---------- ----------------
 ----------- ----------------
Add-EC2SecurityGroupToClientVpnTargetNetwrk
 ApplySecurityGroupsToClientVpnTargetNetwork Amazon Elastic Compute Cloud EC2
Get-EC2SecurityGroup DescribeSecurityGroups
 Amazon Elastic Compute Cloud EC2
Get-EC2SecurityGroupReference DescribeSecurityGroupReferences
 Amazon Elastic Compute Cloud EC2
Get-EC2StaleSecurityGroup DescribeStaleSecurityGroups
 Amazon Elastic Compute Cloud EC2
Grant-EC2SecurityGroupEgress AuthorizeSecurityGroupEgress
 Amazon Elastic Compute Cloud EC2
Grant-EC2SecurityGroupIngress AuthorizeSecurityGroupIngress
 Amazon Elastic Compute Cloud EC2
New-EC2SecurityGroup CreateSecurityGroup
 Amazon Elastic Compute Cloud EC2
Remove-EC2SecurityGroup DeleteSecurityGroup
 Amazon Elastic Compute Cloud EC2
Revoke-EC2SecurityGroupEgress RevokeSecurityGroupEgress
 Amazon Elastic Compute Cloud EC2
Revoke-EC2SecurityGroupIngress RevokeSecurityGroupIngress
 Amazon Elastic Compute Cloud EC2
Update-EC2SecurityGroupRuleEgressDescription UpdateSecurityGroupRuleDescriptionsEgress
 Amazon Elastic Compute Cloud EC2
Update-EC2SecurityGroupRuleIngressDescription
 UpdateSecurityGroupRuleDescriptionsIngress Amazon Elastic Compute Cloud EC2

Cmdlet Discovery 53

AWS Tools for PowerShell User Guide

If you know the name of the AWS Command Line Interface (AWS CLI) command, you can use the
-AwsCliCommand parameter and the desired AWS CLI command name to get the name of the
cmdlet that's based on the same API. For example, to get the cmdlet name that corresponds to the
authorize-security-group-ingress AWS CLI command call in the Amazon EC2 service, run
the following command:

PS > Get-AWSCmdletName -AwsCliCommand "aws ec2 authorize-security-group-ingress"

CmdletName ServiceOperation ServiceName
 CmdletNounPrefix
---------- ---------------- -----------

Grant-EC2SecurityGroupIngress AuthorizeSecurityGroupIngress Amazon Elastic Compute
 Cloud EC2

The Get-AWSCmdletName cmdlet needs only enough of the AWS CLI command name to identify
the service and the AWS API.

To get a list of all of the cmdlets in the Tools for PowerShell Core, run the PowerShell Get-
Command cmdlet, as shown in the following example.

PS > Get-Command -Module AWSPowerShell.NetCore

You can run the same command with -Module AWSPowerShell to see the cmdlets in the AWS
Tools for Windows PowerShell.

The Get-Command cmdlet generates the list of cmdlets in alphabetical order. Note that by default
the list is sorted by PowerShell verb, rather than PowerShell noun.

To sort results by service instead, run the following command:

PS > Get-Command -Module AWSPowerShell.NetCore | Sort-Object Noun,Verb

To filter the cmdlets that are returned by the Get-Command cmdlet, pipe the output to the
PowerShell Select-String cmdlet. For example, to view the set of cmdlets that work with AWS
regions, run the following command:

PS > Get-Command -Module AWSPowerShell.NetCore | Select-String region

Clear-DefaultAWSRegion

Cmdlet Discovery 54

AWS Tools for PowerShell User Guide

Copy-HSM2BackupToRegion
Get-AWSRegion
Get-DefaultAWSRegion
Get-EC2Region
Get-LSRegionList
Get-RDSSourceRegion
Set-DefaultAWSRegion

You can also find cmdlets for a specific service by filtering for the service prefix of cmdlet
nouns. To see the list of available service prefixes, run Get-AWSPowerShellVersion -
ListServiceVersionInfo. The following example returns cmdlets that support the Amazon
CloudWatch Events service.

PS > Get-Command -Module AWSPowerShell -Noun CWE*

CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Add-CWEResourceTag 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Disable-CWEEventSource 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Disable-CWERule 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Enable-CWEEventSource 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Enable-CWERule 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWEEventBus 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWEEventBusList 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWEEventSource 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWEEventSourceList 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWEPartnerEventSource 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWEPartnerEventSourceAccountList 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWEPartnerEventSourceList 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWEResourceTag 3.3.563.1
 AWSPowerShell.NetCore

Cmdlet Discovery 55

AWS Tools for PowerShell User Guide

Cmdlet Get-CWERule 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWERuleDetail 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWERuleNamesByTarget 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Get-CWETargetsByRule 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet New-CWEEventBus 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet New-CWEPartnerEventSource 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Remove-CWEEventBus 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Remove-CWEPartnerEventSource 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Remove-CWEPermission 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Remove-CWEResourceTag 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Remove-CWERule 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Remove-CWETarget 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Test-CWEEventPattern 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Write-CWEEvent 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Write-CWEPartnerEvent 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Write-CWEPermission 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Write-CWERule 3.3.563.1
 AWSPowerShell.NetCore
Cmdlet Write-CWETarget 3.3.563.1
 AWSPowerShell.NetCore

Cmdlet Naming and Aliases

The cmdlets in the AWS Tools for PowerShell for each service are based on the methods
provided by the AWS SDK for the service. However, because of PowerShell's mandatory naming
conventions, the name of a cmdlet might be different from the name of the API call or method

Cmdlet Naming and Aliases 56

AWS Tools for PowerShell User Guide

on which it is based. For example, the Get-EC2Instance cmdlet is based on the Amazon
EC2DescribeInstances method.

In some cases, the cmdlet name may be similar to a method name, but it may actually perform a
different function. For example, the Amazon S3GetObject method retrieves an Amazon S3 object.
However, the Get-S3Object cmdlet returns information about an Amazon S3 object rather than
the object itself.

PS > Get-S3Object -BucketName text-content -Key aws-tech-docs

ETag : "df000002a0fe0000f3c000004EXAMPLE"
BucketName : aws-tech-docs
Key : javascript/frameset.js
LastModified : 6/13/2011 1:24:18 PM
Owner : Amazon.S3.Model.Owner
Size : 512
StorageClass : STANDARD

To get an S3 object with the AWS Tools for PowerShell, run the Read-S3Object cmdlet:

PS > Read-S3Object -BucketName text-content -Key text-object.txt -file c:\tmp\text-
object-download.text

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/5/2012 7:29 PM 20622 text-object-download.text

Note

The cmdlet help for an AWS cmdlet provides the name of the AWS SDK API on which the
cmdlet is based.
For more information about standard PowerShell verbs and their meanings, see Approved
Verbs for PowerShell Commands.

All AWS cmdlets that use the Remove verb – and the Stop-EC2Instance cmdlet when you add
the -Terminate parameter – prompt for confirmation before proceeding. To bypass confirmation,
add the -Force parameter to your command.

Cmdlet Naming and Aliases 57

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands

AWS Tools for PowerShell User Guide

Important

AWS cmdlets do not support the -WhatIf switch.

Aliases

Setup of the AWS Tools for PowerShell installs an aliases file that contains aliases for many of
the AWS cmdlets. You might find these aliases to be more intuitive than the cmdlet names. For
example, service names and AWS SDK method names replace PowerShell verbs and nouns in some
aliases. An example is the EC2-DescribeInstances alias.

Other aliases use verbs that, though they do not follow standard PowerShell conventions, can
be more descriptive of the actual operation. For example, the alias file maps the alias Get-
S3Content to the cmdlet Read-S3Object.

PS > Set-Alias -Name Get-S3Content -Value Read-S3Object

The aliases file is located in the AWS Tools for PowerShell installation directory. To load the aliases
into your environment, dot-source the file. The following is a Windows-based example.

PS > . "C:\Program Files (x86)\AWS Tools\PowerShell\AWSPowershell\AWSAliases.ps1"

For a Linux or macOS shell, it might look like this:

. ~/.local/share/powershell/Modules/AWSPowerShell.NetCore/3.3.563.1/AWSAliases.ps1

To show all AWS Tools for PowerShell aliases, run the following command. This command uses
the ? alias for the PowerShell Where-Object cmdlet and the Source property to filter for only
aliases that come from the AWSPowerShell.NetCore module.

PS > Get-Alias | ? Source -like "AWSPowerShell.NetCore"

CommandType Name Version Source
----------- ---- ------- ------
Alias Add-ASInstances 3.3.343.0
 AWSPowerShell
Alias Add-CTTag 3.3.343.0
 AWSPowerShell

Cmdlet Naming and Aliases 58

AWS Tools for PowerShell User Guide

Alias Add-DPTags 3.3.343.0
 AWSPowerShell
Alias Add-DSIpRoutes 3.3.343.0
 AWSPowerShell
Alias Add-ELBTags 3.3.343.0
 AWSPowerShell
Alias Add-EMRTag 3.3.343.0
 AWSPowerShell
Alias Add-ESTag 3.3.343.0
 AWSPowerShell
Alias Add-MLTag 3.3.343.0
 AWSPowerShell
Alias Clear-AWSCredentials 3.3.343.0
 AWSPowerShell
Alias Clear-AWSDefaults 3.3.343.0
 AWSPowerShell
Alias Dismount-ASInstances 3.3.343.0
 AWSPowerShell
Alias Edit-EC2Hosts 3.3.343.0
 AWSPowerShell
Alias Edit-RSClusterIamRoles 3.3.343.0
 AWSPowerShell
Alias Enable-ORGAllFeatures 3.3.343.0
 AWSPowerShell
Alias Find-CTEvents 3.3.343.0
 AWSPowerShell
Alias Get-ASACases 3.3.343.0
 AWSPowerShell
Alias Get-ASAccountLimits 3.3.343.0
 AWSPowerShell
Alias Get-ASACommunications 3.3.343.0
 AWSPowerShell
Alias Get-ASAServices 3.3.343.0
 AWSPowerShell
Alias Get-ASASeverityLevels 3.3.343.0
 AWSPowerShell
Alias Get-ASATrustedAdvisorCheckRefreshStatuses 3.3.343.0
 AWSPowerShell
Alias Get-ASATrustedAdvisorChecks 3.3.343.0
 AWSPowerShell
Alias Get-ASATrustedAdvisorCheckSummaries 3.3.343.0
 AWSPowerShell
Alias Get-ASLifecycleHooks 3.3.343.0
 AWSPowerShell

Cmdlet Naming and Aliases 59

AWS Tools for PowerShell User Guide

Alias Get-ASLifecycleHookTypes 3.3.343.0
 AWSPowerShell
Alias Get-AWSCredentials 3.3.343.0
 AWSPowerShell
Alias Get-CDApplications 3.3.343.0
 AWSPowerShell
Alias Get-CDDeployments 3.3.343.0
 AWSPowerShell
Alias Get-CFCloudFrontOriginAccessIdentities 3.3.343.0
 AWSPowerShell
Alias Get-CFDistributions 3.3.343.0
 AWSPowerShell
Alias Get-CFGConfigRules 3.3.343.0
 AWSPowerShell
Alias Get-CFGConfigurationRecorders 3.3.343.0
 AWSPowerShell
Alias Get-CFGDeliveryChannels 3.3.343.0
 AWSPowerShell
Alias Get-CFInvalidations 3.3.343.0
 AWSPowerShell
Alias Get-CFNAccountLimits 3.3.343.0
 AWSPowerShell
Alias Get-CFNStackEvents 3.3.343.0
 AWSPowerShell

...

To add your own aliases to this file, you might need to raise the value of PowerShell's
$MaximumAliasCount preference variable to a value greater than 5500. The default value is
4096; you can raise it to a maximum of 32768. To do this, run the following.

PS > $MaximumAliasCount = 32768

To verify that your change was successful, enter the variable name to show its current value.

PS > $MaximumAliasCount
32768

Cmdlet Naming and Aliases 60

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables?view=powershell-6

AWS Tools for PowerShell User Guide

Pipelining and $AWSHistory

For AWS service calls that return collections, the objects within the collection are enumerated
to the pipeline. Result objects that contain additional fields beyond the collection and which are
not paging control fields have these fields added as Note properties for the calls. These Note
properties are logged in the new $AWSHistory session variable, should you need to access this
data. The $AWSHistory variable is described in the next section.

Note

In versions of the Tools for Windows PowerShell prior to v1.1, the collection object
itself was emitted, which required the use of foreach {$_.getenumerator()} to continue
pipelining.

Examples

The following example returns a list of AWS Regions and your Amazon EC2 machine images (AMIs)
in each Region.

PS > Get-AWSRegion | % { Echo $_.Name; Get-EC2Image -Owner self -Region $_ }

The following example stops all Amazon EC2 instances in the current default region.

PS > Get-EC2Instance | Stop-EC2Instance

Because collections enumerate to the pipeline, the output from a given cmdlet might be $null,
a single object, or a collection. If it is a collection, you can use the .Count property to determine
the size of the collection. However, the .Count property is not present when only a single object
is emitted. If your script needs to determine, in a consistent way, how many objects were emitted,
you can check the EmittedObjectsCount property of the last command value in $AWSHistory.

$AWSHistory

To better support pipelining, output from AWS cmdlets is not reshaped to include the service
response and result instances as Note properties on the emitted collection object. Instead, for
those calls that emit a single collection as output, the collection is now enumerated to the

Pipelining and $AWSHistory 61

AWS Tools for PowerShell User Guide

PowerShell pipeline. This means that the AWS SDK response and result data cannot exist in the
pipe, because there is no containing collection object to which it can be attached.

Although most users probably won't need this data, it can be useful for diagnostic purposes,
because you can see exactly what was sent to and received from the underlying AWS service calls
made by the cmdlet.

Starting with version 1.1, this data and more is now available in a new shell variable named
$AWSHistory. This variable maintains a record of AWS cmdlet invocations and the service
responses that were received for each invocation. Optionally, this history can be configured
to also record the service requests that each cmdlet made. Additional useful data, such as the
overall execution time of the cmdlet, can also be obtained from each entry. For security reasons,
requests and responses that contain sensitive data aren't recorded by default. However, the
history can be configured to override this behavior if needed. For more information, see the Set-
AWSHistoryConfiguration cmdlet shown below.

Each entry in the $AWSHistory.Commands list is of type AWSCmdletHistory. This type has the
following useful members:

CmdletName

Name of the cmdlet.

CmdletStart

DateTime that the cmdlet was run.

CmdletEnd

DateTime that the cmdlet finished all processing.

Requests

If request recording is enabled, list of last service requests.

Responses

List of last service responses received.

LastServiceResponse

Helper to return the most recent service response.

LastServiceRequest

Helper to return the most recent service request, if available.

$AWSHistory 62

AWS Tools for PowerShell User Guide

Note that the $AWSHistory variable is not created until an AWS cmdlet making a service call is
used. It evaluates to $null until that time.

Note

Earlier versions of the Tools for Windows PowerShell emitted data related to service
responses as Note properties on the returned object. These are now found on the response
entries that are recorded for each invocation in the list.

Set-AWSHistoryConfiguration

A cmdlet invocation can hold zero or more service request and response entries. To limit memory
impact, the $AWSHistory list keeps a record of only the last five cmdlet executions by default; and
for each, the last five service responses (and if enabled, last five service requests). You can change
these default limits by running the Set-AWSHistoryConfiguration cmdlet. It allows you to
both control the size of the list, and whether service requests are also logged:

PS > Set-AWSHistoryConfiguration -MaxCmdletHistory <value> -MaxServiceCallHistory
 <value> -RecordServiceRequests -IncludeSensitiveData

All parameters are optional.

The MaxCmdletHistory parameter sets the maximum number of cmdlets that can be tracked at
any time. A value of 0 turns off recording of AWS cmdlet activity. The MaxServiceCallHistory
parameter sets the maximum number of service responses (and/or requests) that are tracked for
each cmdlet. The RecordServiceRequests parameter, if specified, turns on tracking of service
requests for each cmdlet. The IncludeSensitiveData parameter, if specified, turns on tracking
of service responses and requests (if tracked) that contain sensitive data for each cmdlet.

If run with no parameters, Set-AWSHistoryConfiguration simply turns off any prior request
recording, leaving the current list sizes unchanged.

To clear all entries in the current history list, run the Clear-AWSHistory cmdlet.

$AWSHistory Examples

Enumerate the details of the AWS cmdlets that are being held in the list to the pipeline.

$AWSHistory 63

AWS Tools for PowerShell User Guide

PS > $AWSHistory.Commands

Access the details of the last AWS cmdlet that was run:

PS > $AWSHistory.LastCommand

Access the details of the last service response received by the last AWS cmdlet that was run. If an
AWS cmdlet is paging output, it may make multiple service calls to obtain either all data or the
maximum amount of data (determined by parameters on the cmdlet).

PS > $AWSHistory.LastServiceResponse

Access the details of the last request made (again, a cmdlet may make more than one request if it is
paging on the user's behalf). Yields $null unless service request tracing is enabled.

PS > $AWSHistory.LastServiceRequest

Automatic Page-to-Completion for Operations that Return Multiple Pages

For service APIs that impose a default maximum object return count for a given call or that support
pageable result sets, all cmdlets "page-to-completion" by default. Each cmdlet makes as many calls
as necessary on your behalf to return the complete data set to the pipeline.

In the following example, which uses Get-S3Object, the $c variable contains S3Object
instances for every key in the bucket test, potentially a very large data set.

PS > $c = Get-S3Object -BucketName test

If you want to retain control of the amount of data returned, you can use parameters on the
individual cmdlets (for example, MaxKey on Get-S3Object) or you can explicitly handle paging
yourself by using a combination of paging parameters on the cmdlets, and data placed in the
$AWSHistory variable to get the service's next token data. The following example uses the
MaxKeys parameter to limit the number of S3Object instances returned to no more than the first
500 found in the bucket.

PS > $c = Get-S3Object -BucketName test -MaxKey 500

$AWSHistory 64

AWS Tools for PowerShell User Guide

To know if more data was available but not returned, use the $AWSHistory session variable entry
that recorded the service calls made by the cmdlet.

If the following expression evaluates to $true, you can find the next marker for the next set of
results using $AWSHistory.LastServiceResponse.NextMarker:

$AWSHistory.LastServiceResponse -ne $null &&
 $AWSHistory.LastServiceResponse.IsTruncated

To manually control paging with Get-S3Object, use a combination of the MaxKey and Marker
parameters for the cmdlet and the IsTruncated/NextMarker notes on the last recorded
response. In the following example, the variable $c contains up to a maximum of 500 S3Object
instances for the next 500 objects that are found in the bucket after the start of the specified key
prefix marker.

PS > $c = Get-S3Object -BucketName test -MaxKey 500 -Marker
 $AWSHistory.LastServiceResponse.NextMarker

Credential and profile resolution

Credentials Search Order

When you run a command, AWS Tools for PowerShell searches for credentials in the following
order. It stops when it finds usable credentials.

1. Literal credentials that are embedded as parameters in the command line.

We strongly recommend using profiles instead of putting literal credentials in your command
lines.

2. A specified profile name or profile location.

• If you specify only a profile name, the command looks for the specified profile in the AWS SDK
store and, if that does not exist, the specified profile from the AWS shared credentials file in
the default location.

• If you specify only a profile location, the command looks for the default profile from that
credentials file.

• If you specify both a name and a location, the command looks for the specified profile in that
credentials file.

Credential and profile resolution 65

AWS Tools for PowerShell User Guide

If the specified profile or location is not found, the command throws an exception. Search
proceeds to the following steps only if you did not specify a profile or location.

3. Credentials specified by the -Credential parameter.

4. The session profile, if one exists.

5. The default profile, in the following order:

a. The default profile in the AWS SDK store.

b. The default profile in the AWS shared credentials file.

c. The AWS PS Default profile in the AWS SDK store.

6. If the command is running on an Amazon EC2 instance that is configured to use an IAM role, the
EC2 instance's temporary credentials accessed from the instance profile.

For more information about using IAM roles for Amazon EC2 instances, see the AWS SDK
for .NET.

If this search fails to locate the specified credentials, the command throws an exception.

Additional information about users and roles

In order to run Tools for PowerShell commands on AWS, you need to have some combination of
users, permission sets, and service roles that are appropriate for your tasks.

The specific users, permission sets, and service roles that you create, and the way in which you use
them, will depend on your requirements. The following is some additional information about why
they might be used and how to create them.

Users and permission sets

Although it's possible to use an IAM user account with long-term credentials to access AWS
services, this is no longer a best practice and should be avoided. Even during development, it is a
best practice to create users and permission sets in AWS IAM Identity Center and use temporary
credentials provided by an identity source.

For development, you can use the user that you created or were given in Configure tool
authentication. If you have appropriate AWS Management Console permissions, you can also
create different permission sets with least privilege for that user or create new users specifically

Users and roles 66

https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-net/

AWS Tools for PowerShell User Guide

for development projects, providing permission sets with least privilege. The course of action you
choose, if any, depends on your circumstances.

For more information about these users and permissions sets and how to create them, see
Authentication and access in the AWS SDKs and Tools Reference Guide and Getting started in the
AWS IAM Identity Center User Guide.

Service roles

You can set up an AWS service role to access AWS services on behalf of users. This type of access
is appropriate if multiple people will be running your application remotely; for example, on an
Amazon EC2 instance that you have created for this purpose.

The process for creating a service role varies depending on the situation, but is essentially the
following.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles, and then choose Create role.

3. Choose AWS service, find and select EC2 (for example), and then choose the EC2 use case (for
example).

4. Choose Next and select the appropriate policies for the AWS services that your application will
use.

Warning

Do NOT choose the AdministratorAccess policy because that policy enables read and
write permissions to almost everything in your account.

5. Choose Next. Enter a Role name, Description, and any tags you want.

You can find information about tags in Controlling access using AWS resource tags in the IAM
User Guide.

6. Choose Create role.

You can find high-level information about IAM roles in IAM Identities (users, user groups, and roles)
in the IAM User Guide. Find detailed information about roles in the IAM roles topic.

Service roles 67

https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_iam-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS Tools for PowerShell User Guide

Using legacy credentials

The topics in this section provide information about using long-term or short-term credentials
without using AWS IAM Identity Center.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Note

The information in these topics is for circumstances where you need to obtain and manage
short-term or long-term credentials manually. For additional information about short-
term and long-term credentials, see Other ways to authenticate in the AWS SDKs and Tools
Reference Guide.
For best security practices, use AWS IAM Identity Center, as described in Configure tool
authentication.

Important warnings and guidance for credentials

Warnings for credentials

• Do NOT use your account's root credentials to access AWS resources. These credentials provide
unrestricted account access and are difficult to revoke.

• Do NOT put literal access keys or credential information in your commands or scripts. If you do,
you create a risk of accidentally exposing your credentials.

• Be aware that any credentials stored in the shared AWS credentials file, are stored in
plaintext.

Using legacy credentials 68

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-users.html

AWS Tools for PowerShell User Guide

Additional guidance for securely managing credentials

For a general discussion of how to securely manage AWS credentials, see AWS security credentials
in the AWS General Reference and Security best practices and use cases in the IAM User Guide. In
addition to those discussions, consider the following:

• Create additional users, such as users in IAM Identity Center, and use their credentials instead
of using your AWS root user credentials. Credentials for other users can be revoked if necessary
or are temporary by nature. In addition, you can apply a policy to each user for access to only
certain resources and actions and thereby take a stance of least-privilege permissions.

• Use IAM roles for tasks for Amazon Elastic Container Service (Amazon ECS) tasks.

• Use IAM roles for applications that are running on Amazon EC2 instances.

Topics

• Using AWS Credentials

• Shared Credentials in AWS Tools for PowerShell

Using AWS Credentials

Each AWS Tools for PowerShell command must include a set of AWS credentials, which are used
to cryptographically sign the corresponding web service request. You can specify credentials per
command, per session, or for all sessions.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Note

The information in this topic is for circumstances where you need to obtain and manage
short-term or long-term credentials manually. For additional information about short-

AWS Credentials 69

https://docs.aws.amazon.com/general/latest/gr/Welcome.html#aws-security-credentials
https://docs.aws.amazon.com/general/latest/gr/
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Tools for PowerShell User Guide

term and long-term credentials, see Other ways to authenticate in the AWS SDKs and Tools
Reference Guide.
For best security practices, use AWS IAM Identity Center, as described in Configure tool
authentication.

As a best practice, to avoid exposing your credentials, do not put literal credentials in a command.
Instead, create a profile for each set of credentials that you want to use, and store the profile in
either of two credential stores. Specify the correct profile by name in your command, and the AWS
Tools for PowerShell retrieves the associated credentials. For a general discussion of how to safely
manage AWS credentials, see Best Practices for Managing AWS Access Keys in the Amazon Web
Services General Reference.

Note

You need an AWS account to get credentials and use the AWS Tools for PowerShell. To
create an AWS account, see Getting started: Are you a first-time AWS user? in the AWS
Account Management Reference Guide.

Topics

• Credentials Store Locations

• Managing Profiles

• Specifying Credentials

• Credentials Search Order

• Credential Handling in AWS Tools for PowerShell Core

Credentials Store Locations

The AWS Tools for PowerShell can use either of two credentials stores:

• The AWS SDK store, which encrypts your credentials and stores them in your home folder.
In Windows, this store is located at: C:\Users\username\AppData\Local\AWSToolkit
\RegisteredAccounts.json.

The AWS SDK for .NET and Toolkit for Visual Studio can also use the AWS SDK store.

AWS Credentials 70

https://docs.aws.amazon.com/sdkref/latest/guide/access-users.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/accounts/latest/reference/welcome-first-time-user.html
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/visualstudio/

AWS Tools for PowerShell User Guide

• The shared credentials file, which is also located in your home folder, but stores credentials as
plain text.

By default, the credentials file is stored here:

• On Windows: C:\Users\username\.aws\credentials

• On Mac/Linux: ~/.aws/credentials

The AWS SDKs and the AWS Command Line Interface can also use the credentials file. If you're
running a script outside of your AWS user context, be sure that the file that contains your
credentials is copied to a location where all user accounts (local system and user) can access your
credentials.

Managing Profiles

Profiles enable you to reference different sets of credentials with AWS Tools for PowerShell.
You can use AWS Tools for PowerShell cmdlets to manage your profiles in the AWS SDK store.
You can also manage profiles in the AWS SDK store by using the Toolkit for Visual Studio or
programmatically by using the AWS SDK for .NET. For directions about how to manage profiles in
the credentials file, see Best Practices for Managing AWS Access Keys.

Add a New profile

To add a new profile to the AWS SDK store, run the command Set-AWSCredential. It stores your
access key and secret key in your default credentials file under the profile name you specify.

PS > Set-AWSCredential `
 -AccessKey AKIA0123456787EXAMPLE `
 -SecretKey wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY `
 -StoreAs MyNewProfile

• -AccessKey– The access key ID.

• -SecretKey– The secret key.

• -StoreAs– The profile name, which must be unique. To specify the default profile, use the name
default.

AWS Credentials 71

https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/tkv_setup.html
https://aws.amazon.com/sdk-for-net/
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

AWS Tools for PowerShell User Guide

Update a Profile

The AWS SDK store must be maintained manually. If you later change credentials on the service
—for example, by using the IAM console—running a command with the locally stored credentials
fails with the following error message:

The Access Key Id you provided does not exist in our records.

You can update a profile by repeating the Set-AWSCredential command for the profile, and
passing it the new access and secret keys.

List Profiles

You can check the current list of names with the following command. In this example, a user
named Shirley has access to three profiles that are all stored in the shared credentials file
(~/.aws/credentials).

PS > Get-AWSCredential -ListProfileDetail

ProfileName StoreTypeName ProfileLocation
----------- ------------- ---------------
default SharedCredentialsFile /Users/shirley/.aws/credentials
production SharedCredentialsFile /Users/shirley/.aws/credentials
test SharedCredentialsFile /Users/shirley/.aws/credentials

Remove a Profile

To remove a profile that you no longer require, use the following command.

PS > Remove-AWSCredentialProfile -ProfileName an-old-profile-I-do-not-need

The -ProfileName parameter specifies the profile that you want to delete.

The deprecated command Clear-AWSCredential is still available for backward compatibility, but
Remove-AWSCredentialProfile is preferred.

Specifying Credentials

There are several ways to specify credentials. The preferred way is to identify a profile instead of
incorporating literal credentials into your command line. AWS Tools for PowerShell locates the
profile using a search order that is described in Credentials Search Order.

AWS Credentials 72

https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/powershell/latest/reference/items/Clear-AWSCredential.html

AWS Tools for PowerShell User Guide

On Windows, AWS credentials stored in the AWS SDK store are encrypted with the logged-in
Windows user identity. They cannot be decrypted by using another account, or used on a device
that's different from the one on which they were originally created. To perform tasks that require
the credentials of another user, such as a user account under which a scheduled task will run, set
up a credential profile, as described in the preceding section, that you can use when you log in to
the computer as that user. Log in as the task-performing user to complete the credential setup
steps, and create a profile that works for that user. Then log out and log in again with your own
credentials to set up the scheduled task.

Note

Use the -ProfileName common parameter to specify a profile. This parameter is
equivalent to the -StoredCredentials parameter in earlier AWS Tools for PowerShell
releases. For backward compatibility, -StoredCredentials is still supported.

Default Profile (Recommended)

All AWS SDKs and management tools can find your credentials automatically on your local
computer if the credentials are stored in a profile named default. For example, if you have a
profile named default on the local computer, you don't have to run either the Initialize-
AWSDefaultConfiguration cmdlet or the Set-AWSCredential cmdlet. The tools
automatically use the access and secret key data stored in that profile. To use an AWS Region
other than your default Region (the results of Get-DefaultAWSRegion), you can run Set-
DefaultAWSRegion and specify a Region.

If your profile is not named default, but you want to use it as the default profile for the current
session, run Set-AWSCredential to set it as the default profile.

Although running Initialize-AWSDefaultConfiguration lets you specify a default profile
for every PowerShell session, the cmdlet loads credentials from your custom-named profile, but
overwrites the default profile with the named profile.

We recommend that you do not run Initialize-AWSDefaultConfiguration unless you are
running a PowerShell session on an Amazon EC2 instance that was not launched with an instance
profile, and you want to set up the credential profile manually. Note that the credential profile
in this scenario would not contain credentials. The credential profile that results from running
Initialize-AWSDefaultConfiguration on an EC2 instance doesn't directly store credentials,

AWS Credentials 73

AWS Tools for PowerShell User Guide

but instead points to instance metadata (that provides temporary credentials that automatically
rotate). However, it does store the instance's Region. Another scenario that might require running
Initialize-AWSDefaultConfiguration occurs if you want to run a call against a Region other
than the Region in which the instance is running. Running that command permanently overrides
the Region stored in the instance metadata.

PS > Initialize-AWSDefaultConfiguration -ProfileName MyProfileName -Region us-west-2

Note

The default credentials are included in the AWS SDK store under the default profile
name. The command overwrites any existing profile with that name.

If your EC2 instance was launched with an instance profile, PowerShell automatically gets the AWS
credentials and Region information from the instance profile. You don't need to run Initialize-
AWSDefaultConfiguration. Running the Initialize-AWSDefaultConfiguration cmdlet
on an EC2 instance launched with an instance profile isn't necessary, because it uses the same
instance profile data that PowerShell already uses by default.

Session Profile

Use Set-AWSCredential to specify a default profile for a particular session. This profile overrides
any default profile for the duration of the session. We recommend this if you want to use a custom-
named profile in your session instead of the current default profile.

PS > Set-AWSCredential -ProfileName MyProfileName

Note

In versions of the Tools for Windows PowerShell that are earlier than 1.1, the Set-
AWSCredential cmdlet did not work correctly, and would overwrite the profile specified
by "MyProfileName". We recommend using a more recent version of the Tools for Windows
PowerShell.

AWS Credentials 74

AWS Tools for PowerShell User Guide

Command Profile

On individual commands, you can add the -ProfileName parameter to specify a profile that
applies to only that one command. This profile overrides any default or session profiles, as shown
in the following example.

PS > Get-EC2Instance -ProfileName MyProfileName

Note

When you specify a default or session profile, you can also add a -Region parameter to
override a default or session Region. For more information, see Specify AWS Regions. The
following example specifies a default profile and Region.

PS > Initialize-AWSDefaultConfiguration -ProfileName MyProfileName -Region us-
west-2

By default, the AWS shared credentials file is assumed to be in the user's home folder (C:\Users
\username\.aws on Windows, or ~/.aws on Linux). To specify a credentials file in a different
location, include the -ProfileLocation parameter and specify the credentials file path. The
following example specifies a non-default credentials file for a specific command.

PS > Get-EC2Instance -ProfileName MyProfileName -ProfileLocation C:
\aws_service_credentials\credentials

Note

If you are running a PowerShell script during a time that you are not normally signed in
to AWS—for example, you are running a PowerShell script as a scheduled task outside
of your normal work hours—add the -ProfileLocation parameter when you specify
the profile that you want to use, and set the value to the path of the file that stores your
credentials. To be certain that your AWS Tools for PowerShell script runs with the correct
account credentials, you should add the -ProfileLocation parameter whenever your
script runs in a context or process that does not use an AWS account. You can also copy
your credentials file to a location that is accessible to the local system or other account that
your scripts use to perform tasks.

AWS Credentials 75

AWS Tools for PowerShell User Guide

Credentials Search Order

When you run a command, AWS Tools for PowerShell searches for credentials in the following
order. It stops when it finds usable credentials.

1. Literal credentials that are embedded as parameters in the command line.

We strongly recommend using profiles instead of putting literal credentials in your command
lines.

2. A specified profile name or profile location.

• If you specify only a profile name, the command looks for the specified profile in the AWS SDK
store and, if that does not exist, the specified profile from the AWS shared credentials file in
the default location.

• If you specify only a profile location, the command looks for the default profile from that
credentials file.

• If you specify both a name and a location, the command looks for the specified profile in that
credentials file.

If the specified profile or location is not found, the command throws an exception. Search
proceeds to the following steps only if you did not specify a profile or location.

3. Credentials specified by the -Credential parameter.

4. The session profile, if one exists.

5. The default profile, in the following order:

a. The default profile in the AWS SDK store.

b. The default profile in the AWS shared credentials file.

c. The AWS PS Default profile in the AWS SDK store.

6. If the command is running on an Amazon EC2 instance that is configured to use an IAM role, the
EC2 instance's temporary credentials accessed from the instance profile.

For more information about using IAM roles for Amazon EC2 instances, see the AWS SDK
for .NET.

If this search fails to locate the specified credentials, the command throws an exception.

AWS Credentials 76

https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-net/

AWS Tools for PowerShell User Guide

Credential Handling in AWS Tools for PowerShell Core

Cmdlets in AWS Tools for PowerShell Core accept AWS access and secret keys or the names of
credential profiles when they run, similarly to the AWS Tools for Windows PowerShell. When they
run on Windows, both modules have access to the AWS SDK for .NET credential store file (stored in
the per-user AppData\Local\AWSToolkit\RegisteredAccounts.json file).

This file stores your keys in encrypted format, and cannot be used on a different computer. It is
the first file that the AWS Tools for PowerShell searches for a credential profile, and is also the file
where the AWS Tools for PowerShell stores credential profiles. For more information about the
AWS SDK for .NET credential store file, see Configuring AWS Credentials. The Tools for Windows
PowerShell module does not currently support writing credentials to other files or locations.

Both modules can read profiles from the AWS shared credentials file that is used by other AWS
SDKs and the AWS CLI. On Windows, the default location for this file is C:\Users\<userid>
\.aws\credentials. On non-Windows platforms, this file is stored at ~/.aws/credentials.
The -ProfileLocation parameter can be used to point to a non-default file name or file
location.

The SDK credential store holds your credentials in encrypted form by using Windows cryptographic
APIs. These APIs are not available on other platforms, so the AWS Tools for PowerShell Core
module uses the AWS shared credentials file exclusively, and supports writing new credential
profiles to the shared credential file.

The following example scripts that use the Set-AWSCredential cmdlet show the
options for handling credential profiles on Windows with either the AWSPowerShell or
AWSPowerShell.NetCore modules.

Writes a new (or updates existing) profile with name "myProfileName"
in the encrypted SDK store file

Set-AWSCredential -AccessKey akey -SecretKey skey -StoreAs myProfileName

Checks the encrypted SDK credential store for the profile and then
falls back to the shared credentials file in the default location

Set-AWSCredential -ProfileName myProfileName

Bypasses the encrypted SDK credential store and attempts to load the
profile from the ini-format credentials file "mycredentials" in the
folder C:\MyCustomPath

AWS Credentials 77

https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config-creds.html

AWS Tools for PowerShell User Guide

Set-AWSCredential -ProfileName myProfileName -ProfileLocation C:\MyCustomPath
\mycredentials

The following examples show the behavior of the AWSPowerShell.NetCore module on the Linux or
macOS operating systems.

Writes a new (or updates existing) profile with name "myProfileName"
in the default shared credentials file ~/.aws/credentials

Set-AWSCredential -AccessKey akey -SecretKey skey -StoreAs myProfileName

Writes a new (or updates existing) profile with name "myProfileName"
into an ini-format credentials file "~/mycustompath/mycredentials"

Set-AWSCredential -AccessKey akey -SecretKey skey -StoreAs myProfileName -
ProfileLocation ~/mycustompath/mycredentials

Reads the default shared credential file looking for the profile "myProfileName"

Set-AWSCredential -ProfileName myProfileName

Reads the specified credential file looking for the profile "myProfileName"

Set-AWSCredential -ProfileName myProfileName -ProfileLocation ~/mycustompath/
mycredentials

Shared Credentials in AWS Tools for PowerShell

The Tools for Windows PowerShell support the use of the AWS shared credentials file, similarly
to the AWS CLI and other AWS SDKs. The Tools for Windows PowerShell now support reading
and writing of basic, session, and assume role credential profiles to both the .NET
credentials file and the AWS shared credential file. This functionality is enabled by a new
Amazon.Runtime.CredentialManagement namespace.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Shared Credentials 78

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Tools for PowerShell User Guide

Note

The information in this topic is for circumstances where you need to obtain and manage
short-term or long-term credentials manually. For additional information about short-
term and long-term credentials, see Other ways to authenticate in the AWS SDKs and Tools
Reference Guide.
For best security practices, use AWS IAM Identity Center, as described in Configure tool
authentication.

The new profile types and access to the AWS shared credential file are supported by the
following parameters that have been added to the credentials-related cmdlets, Initialize-
AWSDefaultConfiguration, New-AWSCredential, and Set-AWSCredential. In service cmdlets, you
can refer to your profiles by adding the common parameter, -ProfileName.

Using an IAM Role with AWS Tools for PowerShell

The AWS shared credential file enables additional types of access. For example, you can access your
AWS resources by using an IAM role instead of the long term credentials of an IAM user. To do this,
you must have a standard profile that has permissions to assume the role. When you tell the AWS
Tools for PowerShell to use a profile that specified a role, the AWS Tools for PowerShell looks up
the profile identified by the SourceProfile parameter. Those credentials are used to request
temporary credentials for the role specified by the RoleArn parameter. You can optionally require
the use of an multi-factor authentication (MFA) device or an ExternalId code when the role is
assumed by a third party.

Parameter Name Description

ExternalId The user-defined external ID to be used when
assuming a role, if required by the role. This
is typically only required when you delegate
access to your account to a third party. The
third party must include the ExternalId as
a parameter when assuming the assigned
role. For more information, see How to Use
an External ID When Granting Access to Your

Shared Credentials 79

https://docs.aws.amazon.com/sdkref/latest/guide/access-users.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Initialize-AWSDefaultConfiguration.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Initialize-AWSDefaultConfiguration.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-AWSCredential.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Set-AWSCredential.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html

AWS Tools for PowerShell User Guide

Parameter Name Description

AWS Resources to a Third Party in the IAM
User Guide.

MfaSerial The MFA serial number to be used when
assuming a role, if required by the role. For
more information, see Using Multi-Factor
Authentication (MFA) in AWS in the IAM User
Guide.

RoleArn The ARN of the role to assume for assume
role credentials. For more information about
creating and using roles, see IAM Roles in the
IAM User Guide.

SourceProfile The name of the source profile to be used
by assume role credentials. The credentials
found in this profile are used to assume the
role specified by the RoleArn parameter.

Setup of profiles for assuming a role

The following is an example showing how to set up a source profile that enables directly assuming
an IAM role.

The first command creates a source profile that is referenced by the role profile. The second
command creates the role profile that which role to assume. The third command shows the
credentials for the role profile.

PS > Set-AWSCredential -StoreAs my_source_profile -AccessKey access_key_id -
SecretKey secret_key
PS > Set-AWSCredential -StoreAs my_role_profile -SourceProfile my_source_profile -
RoleArn arn:aws:iam::123456789012:role/role-i-want-to-assume
PS > Get-AWSCredential -ProfileName my_role_profile

SourceCredentials RoleArn
 RoleSessionName Options
----------------- -------
 --------------- -------

Shared Credentials 80

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS Tools for PowerShell User Guide

Amazon.Runtime.BasicAWSCredentials arn:aws:iam::123456789012:role/
role-i-want-to-assume aws-dotnet-sdk-session-636238288466144357
 Amazon.Runtime.AssumeRoleAWSCredentialsOptions

To use this role profile with the Tools for Windows PowerShell service cmdlets, add the -
ProfileName common parameter to the command to reference the role profile. The following
example uses the role profile defined in the previous example to access the Get-S3Bucket cmdlet.
AWS Tools for PowerShell looks up the credentials in my_source_profile, uses those credentials
to call AssumeRole on behalf of the user, and then uses those temporary role credentials to call
Get-S3Bucket.

PS > Get-S3Bucket -ProfileName my_role_profile

CreationDate BucketName
------------ ----------
2/27/2017 8:57:53 AM 4ba3578c-f88f-4d8b-b95f-92a8858dac58-bucket1
2/27/2017 10:44:37 AM 2091a504-66a9-4d69-8981-aaef812a02c3-bucket2

Using the Credential Profile Types

To set a credential profile type, understand which parameters provide the information required by
the profile type.

Credentials Type Parameters you must use

Basic

These are the long term credentials for an IAM
user

-AccessKey

-SecretKey

Session:

These are the short term credentials for an
IAM role that you retrieve manually, such as by
directly calling the Use-STSRole cmdlet.

-AccessKey

-SecretKey

-SessionToken

Role: -SourceProfile

-RoleArn

Shared Credentials 81

https://docs.aws.amazon.com/powershell/latest/reference/items/Get-S3Bucket.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Use-STSRole.html

AWS Tools for PowerShell User Guide

Credentials Type Parameters you must use

These are are short term credentials for
an IAM role that AWS Tools for PowerShell
retrieve for you.

optional: -ExternalId

optional: -MfaSerial

The ProfilesLocation Common Parameter

You can use -ProfileLocation to write to the shared credential file as well as instruct a cmdlet
to read from the credential file. Adding the -ProfileLocation parameter controls whether Tools
for Windows PowerShell uses the shared credential file or the .NET credential file. The following
table describes how the parameter works in Tools for Windows PowerShell.

Profile Location Value Profile Resolution Behavior

null (not set) or empty First, search the .NET credential file for a
profile with the specified name. If the profile
isn't found, search the AWS shared credentials
file at (user's home directory) \.aws
\credentials .

The path to a file in the AWS shared credentia
l file format

Search only the specified file for a profile with
the given name.

Save Credentials to a Credentials File

To write and save credentials to one of the two credential files, run the Set-AWSCredential
cmdlet. The following example shows how to do this. The first command uses Set-
AWSCredential with -ProfileLocation to add access and secret keys to a profile specified
by the -ProfileName parameter. In the second line, run the Get-Content cmdlet to display the
contents of the credentials file.

PS > Set-AWSCredential -ProfileLocation C:\Users\auser\.aws\credentials -ProfileName
 basic_profile -AccessKey access_key2 -SecretKey secret_key2
PS > Get-Content C:\Users\auser\.aws\credentials

aws_access_key_id=access_key2

Shared Credentials 82

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content

AWS Tools for PowerShell User Guide

aws_secret_access_key=secret_key2

Displaying Your Credential Profiles

Run the Get-AWSCredential cmdlet and add the -ListProfileDetail parameter to return
credential file types and locations, and a list of profile names.

PS > Get-AWSCredential -ListProfileDetail

ProfileName StoreTypeName ProfileLocation
----------- ------------- ---------------
source_profile NetSDKCredentialsFile
assume_role_profile NetSDKCredentialsFile
basic_profile SharedCredentialsFile C:\Users\auser\.aws\credentials

Removing Credential Profiles

To remove credential profiles, run the new Remove-AWSCredentialProfile cmdlet. Clear-
AWSCredential is deprecated, but still available for backward compatibility.

Important Notes

Only Initialize-AWSDefaultConfiguration, New-AWSCredential, and Set-AWSCredential
support the parameters for role profiles. You cannot specify the role parameters directly on a
command such as Get-S3Bucket -SourceProfile source_profile_name -RoleArn
arn:aws:iam::999999999999:role/role_name. That does not work because service cmdlets
do not directly support the SourceProfile or RoleArn parameters. Instead, you must store
those parameters in a profile, then call the command with the -ProfileName parameter.

Shared Credentials 83

https://docs.aws.amazon.com/powershell/latest/reference/items/Get-AWSCredential.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Remove-AWSCredentialProfile.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Clear-AWSCredential.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Clear-AWSCredential.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Initialize-AWSDefaultConfiguration.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-AWSCredential.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Set-AWSCredential.html

AWS Tools for PowerShell User Guide

Work with AWS services in the AWS Tools for PowerShell

This section provides examples of using the AWS Tools for PowerShell to access AWS services.
These examples help demonstrate how to use the cmdlets to perform actual AWS tasks. These
examples rely on cmdlets that the Tools for PowerShell provides. To see what cmdlets are
available, see the AWS Tools for PowerShell Cmdlet Reference.

PowerShell File Concatenation Encoding

Some cmdlets in the AWS Tools for PowerShell edit existing files or records that you have in AWS.
An example is Edit-R53ResourceRecordSet, which calls the ChangeResourceRecordSets API for
Amazon Route 53.

When you edit or concatenate files in PowerShell 5.1 or older releases, PowerShell encodes the
output in UTF-16, not UTF-8. This can add unwanted characters and create results that are not
valid. A hexadecimal editor can reveal the unwanted characters.

To avoid converting file output to UTF-16, you can pipe your command into PowerShell's Out-
File cmdlet and specify UTF-8 encoding, as shown in the following example:

PS > *some file concatenation command* | Out-File filename.txt -Encoding utf8

If you are running AWS CLI commands from within the PowerShell console, the same behavior
applies. You can pipe the output of an AWS CLI command into Out-File in the PowerShell
console. Other cmdlets, such as Export-Csv or Export-Clixml, also have an Encoding
parameter. For a complete list of cmdlets that have an Encoding parameter, and that allow you to
correct the encoding of the output of a concatenated file, run the following command:

PS > Get-Command -ParameterName "Encoding"

Note

PowerShell 6.0 and newer, including PowerShell Core, automatically retains UTF-8
encoding for concatenated file output.

PowerShell File Concatenation Encoding 84

https://docs.aws.amazon.com/powershell/latest/reference/
https://docs.aws.amazon.com/Route53/latest/APIReference/API_ChangeResourceRecordSets.html

AWS Tools for PowerShell User Guide

Returned Objects for the PowerShell Tools

To make AWS Tools for PowerShell more useful in a native PowerShell environment, the object
returned by a AWS Tools for PowerShell cmdlet is a .NET object, not the JSON text object that
is typically returned from the corresponding API in the AWS SDK. For example, Get-S3Bucket
emits a Buckets collection, not an Amazon S3 JSON response object. The Buckets collection
can be placed in the PowerShell pipeline and interacted with in appropriate ways. Similarly, Get-
EC2Instance emits a Reservation .NET object collection, not a DescribeEC2Instances JSON
result object. This behavior is by design and enables the AWS Tools for PowerShell experience to be
more consistent with idiomatic PowerShell.

The actual service responses are available for you if you need them. They are stored as note
properties on the returned objects. For API actions that support paging by using NextToken fields,
these are also attached as note properties.

Amazon EC2

This section walks through the steps required to launch an Amazon EC2 instance including how to:

• Retrieve a list of Amazon Machine Images (AMIs).

• Create a key pair for SSH authentication.

• Create and configure an Amazon EC2 security group.

• Launch the instance and retrieve information about it.

Amazon S3

The section walks through the steps required to create a static website hosted in Amazon S3. It
demonstrates how to:

• Create and delete Amazon S3 buckets.

• Upload files to an Amazon S3 bucket as objects.

• Delete objects from an Amazon S3 bucket.

• Designate an Amazon S3 bucket as a website.

Returned Objects for the PowerShell Tools 85

AWS Tools for PowerShell User Guide

AWS Lambda and AWS Tools for PowerShell

This section provides a brief overview of the AWS Lambda Tools for PowerShell module and
describes the required steps for setting up the module.

Amazon SNS and Amazon SQS

This section walks through the steps required to subscribe an Amazon SQS queue to an Amazon
SNS topic. It demonstrates how to:

• Create an Amazon SNS topic.

• Create an Amazon SQS queue.

• Subscribe the queue to the topic.

• Send a message to the topic.

• Receive the message from the queue.

CloudWatch

This section provides an example of how to publish custom data to CloudWatch.

• Publish a Custom Metric to Your CloudWatch Dashboard.

See Also

• Get started with the AWS Tools for Windows PowerShell

Topics

• Amazon S3 and Tools for Windows PowerShell

• Amazon EC2 and Tools for Windows PowerShell

• AWS Lambda and AWS Tools for PowerShell

• Amazon SQS, Amazon SNS and Tools for Windows PowerShell

• CloudWatch from the AWS Tools for Windows PowerShell

AWS Lambda and AWS Tools for PowerShell 86

AWS Tools for PowerShell User Guide

• Using the ClientConfig parameter in cmdlets

Amazon S3 and Tools for Windows PowerShell

In this section, we create a static website using the AWS Tools for Windows PowerShell using
Amazon S3 and CloudFront. In the process, we demonstrate a number of common tasks with these
services. This walkthrough is modeled after the Getting Started Guide for Host a Static Website,
which describes a similar process using the AWS Management Console.

The commands shown here assume that you have set default credentials and a default region for
your PowerShell session. Therefore, credentials and regions are not included in the invocation of
the cmdlets.

Note

There is currently no Amazon S3 API for renaming a bucket or object, and therefore,
no single Tools for Windows PowerShell cmdlet for performing this task. To rename an
object in S3, we recommend that you copy the object to one with a new name, by running
the Copy-S3Object cmdlet, and then delete the original object by running the Remove-
S3Object cmdlet.

See also

• Work with AWS services in the AWS Tools for PowerShell

• Hosting a Static Website on Amazon S3

• Amazon S3 Console

Topics

• Create an Amazon S3 Bucket, Verify Its Region, and Optionally Remove It

• Configure an Amazon S3 Bucket as a Website and Enable Logging

• Upload Objects to an Amazon S3 Bucket

• Delete Amazon S3 Objects and Buckets

• Upload In-Line Text Content to Amazon S3

Amazon S3 and Tools for Windows PowerShell 87

https://aws.amazon.com/getting-started/projects/host-static-website/
https://console.aws.amazon.com/s3/home
https://docs.aws.amazon.com/powershell/latest/reference/items/Copy-S3Object.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Remove-S3Object.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Remove-S3Object.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
https://console.aws.amazon.com/s3/home

AWS Tools for PowerShell User Guide

Create an Amazon S3 Bucket, Verify Its Region, and Optionally Remove
It

Use the New-S3Bucket cmdlet to create a new Amazon S3 bucket. The following examples creates
a bucket named website-example. The name of the bucket must be unique across all regions.
The example creates the bucket in the us-west-1 region.

PS > New-S3Bucket -BucketName website-example -Region us-west-2

CreationDate BucketName
------------ ----------
8/16/19 8:45:38 PM website-example

You can verify the region in which the bucket is located using the Get-S3BucketLocation
cmdlet.

PS > Get-S3BucketLocation -BucketName website-example

Value

us-west-2

When you're done with this tutorial, you can use the following line to remove this bucket. We
suggest that you leave this bucket in place as we use it in subsequent examples.

PS > Remove-S3Bucket -BucketName website-example

Note that the bucket removal process can take some time to finish. If you try to re-create a same-
named bucket immediately, the New-S3Bucket cmdlet can fail until the old one is completely
gone.

See Also

• Work with AWS services in the AWS Tools for PowerShell

• Put Bucket (Amazon S3 Service Reference)

• AWS PowerShell Regions for Amazon S3

Create an Amazon S3 Bucket, Verify Its Region, and Optionally Remove It 88

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

AWS Tools for PowerShell User Guide

Configure an Amazon S3 Bucket as a Website and Enable Logging

Use the Write-S3BucketWebsite cmdlet to configure an Amazon S3 bucket as a static website.
The following example specifies a name of index.html for the default content web page and a
name of error.html for the default error web page. Note that this cmdlet does not create those
pages. They need to be uploaded as Amazon S3 objects.

PS > Write-S3BucketWebsite -BucketName website-example -
WebsiteConfiguration_IndexDocumentSuffix index.html -WebsiteConfiguration_ErrorDocument
 error.html
RequestId : A1813E27995FFDDD
AmazonId2 : T7hlDOeLqA5Q2XfTe8j2q3SLoP3/5XwhUU3RyJBGHU/LnC+CIWLeGgP0MY24xAlI
ResponseStream :
Headers : {x-amz-id-2, x-amz-request-id, Content-Length, Date...}
Metadata : {}
ResponseXml :

See Also

• Work with AWS services in the AWS Tools for PowerShell

• Put Bucket Website (Amazon S3 API Reference)

• Put Bucket ACL (Amazon S3 API Reference)

Upload Objects to an Amazon S3 Bucket

Use the Write-S3Object cmdlet to upload files from your local file system to an Amazon S3
bucket as objects. The example below creates and uploads two simple HTML files to an Amazon
S3 bucket, and verifies the existence of the uploaded objects. The -File parameter to Write-
S3Object specifies the name of the file in the local file system. The -Key parameter specifies the
name that the corresponding object will have in Amazon S3.

Amazon infers the content-type of the objects from the file extensions, in this case, ".html".

PS > # Create the two files using here-strings and the Set-Content cmdlet
PS > $index_html = @"
>> <html>
>> <body>
>> <p>

Configure an Amazon S3 Bucket as a Website and Enable Logging 89

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html

AWS Tools for PowerShell User Guide

>> Hello, World!
>> </p>
>> </body>
>> </html>
>> "@
>>
PS > $index_html | Set-Content index.html
PS > $error_html = @"
>> <html>
>> <body>
>> <p>
>> This is an error page.
>> </p>
>> </body>
>> </html>
>> "@
>>
>>$error_html | Set-Content error.html
>># Upload the files to Amazon S3 using a foreach loop
>>foreach ($f in "index.html", "error.html") {
>> Write-S3Object -BucketName website-example -File $f -Key $f -CannedACLName public-
read
>> }
>>
PS > # Verify that the files were uploaded
PS > Get-S3BucketWebsite -BucketName website-example

IndexDocumentSuffix ErrorDocument
------------------- -------------
index.html error.html

Canned ACL Options

The values for specifying canned ACLs with the Tools for Windows PowerShell are the same as
those used by the AWS SDK for .NET. Note, however, that these are different from the values used
by the Amazon S3Put Object action. The Tools for Windows PowerShell support the following
canned ACLs:

• NoACL

• private

• public-read

• public-read-write

Upload Objects to an Amazon S3 Bucket 90

AWS Tools for PowerShell User Guide

• aws-exec-read

• authenticated-read

• bucket-owner-read

• bucket-owner-full-control

• log-delivery-write

For more information about these canned ACL settings, see Access Control List Overview.

Note Regarding Multipart Upload

If you use the Amazon S3 API to upload a file that is larger than 5 GB in size, you need to use
multipart upload. However, the Write-S3Object cmdlet provided by the Tools for Windows
PowerShell can transparently handle file uploads that are greater than 5 GB.

Test the Website

At this point, you can test the website by navigating to it using a browser. URLs for static websites
hosted in Amazon S3 follow a standard format.

http://<bucket-name>.s3-website-<region>.amazonaws.com

For example:

http://website-example.s3-website-us-west-1.amazonaws.com

See Also

• Work with AWS services in the AWS Tools for PowerShell

• Put Object (Amazon S3 API Reference)

• Canned ACLs (Amazon S3 API Reference)

Delete Amazon S3 Objects and Buckets

This section describes how to delete the website that you created in preceding sections. You can
simply delete the objects for the HTML files, and then delete the Amazon S3 bucket for the site.

First, run the Remove-S3Object cmdlet to delete the objects for the HTML files from the Amazon
S3 bucket.

Delete Amazon S3 Objects and Buckets 91

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ACLOverview.html#CannedACL

AWS Tools for PowerShell User Guide

PS > foreach ($obj in "index.html", "error.html") {
>> Remove-S3Object -BucketName website-example -Key $obj
>> }
>>
IsDeleteMarker

False

The False response is an expected artifact of the way that Amazon S3 processes the request. In
this context, it does not indicate an issue.

Now you can run the Remove-S3Bucket cmdlet to delete the now-empty Amazon S3 bucket for
the site.

PS > Remove-S3Bucket -BucketName website-example

RequestId : E480ED92A2EC703D
AmazonId2 : k6tqaqC1nMkoeYwbuJXUx1/UDa49BJd6dfLN0Ls1mWYNPHjbc8/Nyvm6AGbWcc2P
ResponseStream :
Headers : {x-amz-id-2, x-amz-request-id, Date, Server}
Metadata : {}
ResponseXml :

In 1.1 and newer versions of the AWS Tools for PowerShell, you can add the -
DeleteBucketContent parameter to Remove-S3Bucket, which first deletes all objects and
object versions in the specified bucket before trying to remove the bucket itself. Depending on the
number of objects or object versions in the bucket, this operation can take a substantial amount of
time. In versions of the Tools for Windows PowerShell older than 1.1, the bucket had to be empty
before Remove-S3Bucket could delete it.

Note

Unless you add the -Force parameter, AWS Tools for PowerShell prompts you for
confirmation before the cmdlet runs.

See Also

• Work with AWS services in the AWS Tools for PowerShell

• Delete Object (Amazon S3 API Reference)

Delete Amazon S3 Objects and Buckets 92

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html

AWS Tools for PowerShell User Guide

• DeleteBucket (Amazon S3 API Reference)

Upload In-Line Text Content to Amazon S3

The Write-S3Object cmdlet supports the ability to upload in-line text content to Amazon S3.
Using the -Content parameter (alias -Text), you can specify text-based content that should be
uploaded to Amazon S3 without needing to place it into a file first. The parameter accepts simple
one-line strings as well as here strings that contain multiple lines.

PS > # Specifying content in-line, single line text:
PS > write-s3object mybucket -key myobject.txt -content "file content"

PS > # Specifying content in-line, multi-line text: (note final newline needed to end
 in-line here-string)
PS > write-s3object mybucket -key myobject.txt -content @"
>> line 1
>> line 2
>> line 3
>> "@
>>
PS > # Specifying content from a variable: (note final newline needed to end in-line
 here-string)
PS > $x = @"
>> line 1
>> line 2
>> line 3
>> "@
>>
PS > write-s3object mybucket -key myobject.txt -content $x

Amazon EC2 and Tools for Windows PowerShell

You can perform common tasks related to Amazon EC2 using the AWS Tools for PowerShell.

The example commands shown here assume that you have set default credentials and a default
region for your PowerShell session. Therefore, we don't include credentials or region when we
invoke the cmdlets. For more information, see Get started with the AWS Tools for Windows
PowerShell.

Topics

Upload In-Line Text Content to Amazon S3 93

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html

AWS Tools for PowerShell User Guide

• Creating a Key Pair

• Create a Security Group Using Windows PowerShell

• Find an Amazon Machine Image Using Windows PowerShell

• Launch an Amazon EC2 Instance Using Windows PowerShell

Creating a Key Pair

The following New-EC2KeyPair example creates a key pair and stores in the PowerShell variable
$myPSKeyPair

PS > $myPSKeyPair = New-EC2KeyPair -KeyName myPSKeyPair

Pipe the key pair object into the Get-Member cmdlet to see the object's structure.

PS > $myPSKeyPair | Get-Member

 TypeName: Amazon.EC2.Model.KeyPair

 Name MemberType Definition
 ---- ---------- ----------
 Equals Method bool Equals(System.Object obj)
 GetHashCode Method int GetHashCode()
 GetType Method type GetType()
 ToString Method string ToString()
 KeyFingerprint Property System.String KeyFingerprint {get;set;}
 KeyMaterial Property System.String KeyMaterial {get;set;}
 KeyName Property System.String KeyName {get;set;}

Pipe the key pair object into the Format-List cmdlet to view values of the KeyName,
KeyFingerprint, and KeyMaterial members. (The output has been truncated for readability.)

PS > $myPSKeyPair | Format-List KeyName, KeyFingerprint, KeyMaterial

 KeyName : myPSKeyPair
 KeyFingerprint : 09:06:70:8e:26:b6:e7:ef:8f:fe:4a:1d:bc:9c:6a:63:11:ac:ad:3c
 KeyMaterial : ----BEGIN RSA PRIVATE KEY----
 MIIEogIBAAKCAQEAkK+ANYUS9c7niNjYfaCn6KYj/D0I6djnFoQE...
 Mz6btoxPcE7EMeH1wySUp8nouAS9xbl9l7+VkD74bN9KmNcPa/Mu...
 Zyn4vVe0Q5il/MpkrRogHqOB0rigeTeV5Yc3lvO0RFFPu0Kz4kcm...
 w3Jg8dKsWn0plOpX7V3sRC02KgJIbejQUvBFGi5OQK9bm4tXBIeC...

Create a Key Pair 94

AWS Tools for PowerShell User Guide

 daxKIAQMtDUdmBDrhR1/YMv8itFe5DiLLbq7Ga+FDcS85NstBa3h...
 iuskGkcvgWkcFQkLmRHRoDpPb+OdFsZtjHZDpMVFmA9tT8EdbkEF...
 3SrNeqZPsxJJIxOodb3CxLJpg75JU5kyWnb0+sDNVHoJiZCULCr0...
 GGlLfEgB95KjGIk7zEv2Q7K6s+DHclrDeMZWa7KFNRZuCuX7jssC...
 xO98abxMr3o3TNU6p1ZYRJEQ0oJr0W+kc+/8SWb8NIwfLtwhmJEy...
 1BX9X8WFX/A8VLHrT1elrKmLkNECgYEAwltkV1pOJAFhz9p7ZFEv...
 vvVsPaF0Ev9bk9pqhx269PB5Ox2KokwCagDMMaYvasWobuLmNu/1...
 lmwRx7KTeQ7W1J3OLgxHA1QNMkip9c4Tb3q9vVc3t/fPf8vwfJ8C...
 63g6N6rk2FkHZX1E62BgbewUd3eZOS05Ip4VUdvtGcuc8/qa+e5C...
 KXgyt9nl64pMv+VaXfXkZhdLAdY0Khc9TGB9++VMSG5TrD15YJId...
 gYALEI7m1jJKpHWAEs0hiemw5VmKyIZpzGstSJsFStERlAjiETDH...
 YAtnI4J8dRyP9I7BOVOn3wNfIjk85gi1/0Oc+j8S65giLAfndWGR...
 9R9wIkm5BMUcSRRcDy0yuwKBgEbkOnGGSD0ah4HkvrUkepIbUDTD...
 AnEBM1cXI5UT7BfKInpUihZi59QhgdK/hkOSmWhlZGWikJ5VizBf...
 drkBr/vTKVRMTi3lVFB7KkIV1xJxC5E/BZ+YdZEpWoCZAoGAC/Cd...
 TTld5N6opgOXAcQJwzqoGa9ZMwc5Q9f4bfRc67emkw0ZAAwSsvWR...
 x3O2duuy7/smTwWwskEWRK5IrUxoMv/VVYaqdzcOajwieNrblr7c...
 -----END RSA PRIVATE KEY-----

The KeyMaterial member stores the private key for the key pair. The public key is stored in AWS.
You can't retrieve the public key from AWS, but you can verify the public key by comparing the
KeyFingerprint for the private key to that returned from AWS for the public key.

Viewing the Fingerprint of Your Key Pair

You can use the Get-EC2KeyPair cmdlet to view the fingerprint for your key pair.

PS > Get-EC2KeyPair -KeyName myPSKeyPair | format-list KeyName, KeyFingerprint

 KeyName : myPSKeyPair
 KeyFingerprint : 09:06:70:8e:26:b6:e7:ef:8f:fe:4a:1d:bc:9c:6a:63:11:ac:ad:3c

Storing Your Private Key

To store the private key to a file, pipe the KeyFingerMaterial member to the Out-File cmdlet.

PS > $myPSKeyPair.KeyMaterial | Out-File -Encoding ascii myPSKeyPair.pem

You must specify -Encoding ascii when writing the private key to a file. Otherwise, tools such
as openssl might not be able to read the file correctly. You can verify that the format of the
resulting file is correct by using a command such as the following:

Create a Key Pair 95

AWS Tools for PowerShell User Guide

PS > openssl rsa -check < myPSKeyPair.pem

(The openssl tool is not included with the AWS Tools for PowerShell or the AWS SDK for .NET.)

Removing Your Key Pair

You need your key pair to launch and connect to an instance. When you are done using a key pair,
you can remove it. To remove the public key from AWS, use the Remove-EC2KeyPair cmdlet.
When prompted, press Enter to remove the key pair.

PS > Remove-EC2KeyPair -KeyName myPSKeyPair

Confirm
Performing the operation "Remove-EC2KeyPair (DeleteKeyPair)" on target "myPSKeyPair".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

The variable, $myPSKeyPair, still exists in the current PowerShell session and still contains the
key pair information. The myPSKeyPair.pem file also exists. However, the private key is no longer
valid because the public key for the key pair is no longer stored in AWS.

Create a Security Group Using Windows PowerShell

You can use the AWS Tools for PowerShell to create and configure a security group. When you
create a security group, you specify whether it is for EC2-Classic or EC2-VPC. The response is the ID
of the security group.

If you need to connect to your instance, you must configure the security group to allow SSH traffic
(Linux) or RDP traffic (Windows).

Topics

• Prerequisites

• Creating a Security Group for EC2-Classic

• Creating a Security Group for EC2-VPC

Prerequisites

You need the public IP address of your computer, in CIDR notation. You can get the public IP
address of your local computer using a service. For example, Amazon provides the following

Create a Security Group 96

AWS Tools for PowerShell User Guide

service: http://checkip.amazonaws.com/ or https://checkip.amazonaws.com/. To locate another
service that provides your IP address, use the search phrase "what is my IP address". If you are
connecting through an ISP or from behind your firewall without a static IP address, you need to
find the range of IP addresses that can be used by your client computers.

Warning

If you specify 0.0.0.0/0, you are enabling traffic from any IP addresses in the world.
For the SSH and RDP protocols, you might consider this acceptable for a short time in a
test environment, but it's unsafe for production environments. In production, be sure to
authorize access only from the appropriate individual IP address or range of addresses.

Creating a Security Group for EC2-Classic

Warning

We are retiring EC2-Classic on August 15, 2022. We recommend that you migrate from
EC2-Classic to a VPC. For more information, see Migrate from EC2-Classic to a VPC in the
Amazon EC2 User Guide for Linux Instances or the Amazon EC2 User Guide for Windows
Instances. Also see the blog post EC2-Classic Networking is Retiring – Here's How to
Prepare.

The following example uses the New-EC2SecurityGroup cmdlet to create a security group for
EC2-Classic.

PS > New-EC2SecurityGroup -GroupName myPSSecurityGroup -GroupDescription "EC2-Classic
 from PowerShell"

sg-0a346530123456789

To view the initial configuration of the security group, use the Get-EC2SecurityGroup cmdlet.

PS > Get-EC2SecurityGroup -GroupNames myPSSecurityGroup

Description : EC2-Classic from PowerShell
GroupId : sg-0a346530123456789

Create a Security Group 97

http://checkip.amazonaws.com/
https://checkip.amazonaws.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/vpc-migrate.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/vpc-migrate.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

AWS Tools for PowerShell User Guide

GroupName : myPSSecurityGroup
IpPermissions : {}
IpPermissionsEgress : {Amazon.EC2.Model.IpPermission}
OwnerId : 123456789012
Tags : {}
VpcId : vpc-9668ddef

To configure the security group to allow inbound traffic on TCP port 22 (SSH) and TCP port 3389,
use the Grant-EC2SecurityGroupIngress cmdlet. For example, the following example script
shows how you could enable SSH traffic from a single IP address, 203.0.113.25/32.

$cidrBlocks = New-Object 'collections.generic.list[string]'
$cidrBlocks.add("203.0.113.25/32")
$ipPermissions = New-Object Amazon.EC2.Model.IpPermission
$ipPermissions.IpProtocol = "tcp"
$ipPermissions.FromPort = 22
$ipPermissions.ToPort = 22
ipPermissions.IpRanges = $cidrBlocks
Grant-EC2SecurityGroupIngress -GroupName myPSSecurityGroup -IpPermissions
 $ipPermissions

To verify the security group was updated, run the Get-EC2SecurityGroup cmdlet again. Note
that you can't specify an outbound rule for EC2-Classic.

PS > Get-EC2SecurityGroup -GroupNames myPSSecurityGroup

OwnerId : 123456789012
GroupName : myPSSecurityGroup
GroupId : sg-0a346530123456789
Description : EC2-Classic from PowerShell
IpPermissions : {Amazon.EC2.Model.IpPermission}
IpPermissionsEgress : {}
VpcId :
Tags : {}

To view the security group rule, use the IpPermissions property.

PS > (Get-EC2SecurityGroup -GroupNames myPSSecurityGroup).IpPermissions

IpProtocol : tcp
FromPort : 22

Create a Security Group 98

AWS Tools for PowerShell User Guide

ToPort : 22
UserIdGroupPairs : {}
IpRanges : {203.0.113.25/32}

Creating a Security Group for EC2-VPC

The following New-EC2SecurityGroup example adds the -VpcId parameter to create a security
group for the specified VPC.

PS > $groupid = New-EC2SecurityGroup `
 -VpcId "vpc-da0013b3" `
 -GroupName "myPSSecurityGroup" `
 -GroupDescription "EC2-VPC from PowerShell"

To view the initial configuration of the security group, use the Get-EC2SecurityGroup cmdlet.
By default, the security group for a VPC contains a rule that allows all outbound traffic. Notice that
you can't reference a security group for EC2-VPC by name.

PS > Get-EC2SecurityGroup -GroupId sg-5d293231

OwnerId : 123456789012
GroupName : myPSSecurityGroup
GroupId : sg-5d293231
Description : EC2-VPC from PowerShell
IpPermissions : {}
IpPermissionsEgress : {Amazon.EC2.Model.IpPermission}
VpcId : vpc-da0013b3
Tags : {}

To define the permissions for inbound traffic on TCP port 22 (SSH) and TCP port 3389, use the
New-Object cmdlet. The following example script defines permissions for TCP ports 22 and 3389
from a single IP address, 203.0.113.25/32.

$ip1 = new-object Amazon.EC2.Model.IpPermission
$ip1.IpProtocol = "tcp"
$ip1.FromPort = 22
$ip1.ToPort = 22
$ip1.IpRanges.Add("203.0.113.25/32")
$ip2 = new-object Amazon.EC2.Model.IpPermission
$ip2.IpProtocol = "tcp"
$ip2.FromPort = 3389

Create a Security Group 99

AWS Tools for PowerShell User Guide

$ip2.ToPort = 3389
$ip2.IpRanges.Add("203.0.113.25/32")
Grant-EC2SecurityGroupIngress -GroupId $groupid -IpPermissions @($ip1, $ip2)

To verify the security group has been updated, use the Get-EC2SecurityGroup cmdlet again.

PS > Get-EC2SecurityGroup -GroupIds sg-5d293231

OwnerId : 123456789012
GroupName : myPSSecurityGroup
GroupId : sg-5d293231
Description : EC2-VPC from PowerShell
IpPermissions : {Amazon.EC2.Model.IpPermission}
IpPermissionsEgress : {Amazon.EC2.Model.IpPermission}
VpcId : vpc-da0013b3
Tags : {}

To view the inbound rules, you can retrieve the IpPermissions property from the collection
object returned by the previous command.

PS > (Get-EC2SecurityGroup -GroupIds sg-5d293231).IpPermissions

IpProtocol : tcp
FromPort : 22
ToPort : 22
UserIdGroupPairs : {}
IpRanges : {203.0.113.25/32}

IpProtocol : tcp
FromPort : 3389
ToPort : 3389
UserIdGroupPairs : {}
IpRanges : {203.0.113.25/32}

Find an Amazon Machine Image Using Windows PowerShell

When you launch an Amazon EC2 instance, you specify an Amazon Machine Image (AMI) to serve
as a template for the instance. However, the IDs for the AWS Windows AMIs change frequently
because AWS provides new AMIs with the latest updates and security enhancements. You can use
the Get-EC2Image and Get-EC2ImageByName cmdlets to find the current Windows AMIs and get
their IDs.

Find an AMI 100

https://docs.aws.amazon.com/powershell/latest/reference/items/Get-EC2Image.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-EC2ImageByName.html

AWS Tools for PowerShell User Guide

Topics

• Get-EC2Image

• Get-EC2ImageByName

Get-EC2Image

The Get-EC2Image cmdlet retrieves a list of AMIs that you can use.

Use the -Owner parameter with the array value amazon, self so that Get-EC2Image retrieves
only AMIs that belong to Amazon or to you. In this context, you refers to the user whose credentials
you used to invoke the cmdlet.

PS > Get-EC2Image -Owner amazon, self

You can scope the results using the -Filter parameter. To specify the filter, create an object of
type Amazon.EC2.Model.Filter. For example, use the following filter to display only Windows
AMIs.

$platform_values = New-Object 'collections.generic.list[string]'
$platform_values.add("windows")
$filter_platform = New-Object Amazon.EC2.Model.Filter -Property @{Name = "platform";
 Values = $platform_values}
Get-EC2Image -Owner amazon, self -Filter $filter_platform

The following is an example of one of the AMIs returned by the cmdlet; the actual output of the
previous command provides information for many AMIs.

Architecture : x86_64
BlockDeviceMappings : {/dev/sda1, xvdca, xvdcb, xvdcc…}
CreationDate : 2019-06-12T10:41:31.000Z
Description : Microsoft Windows Server 2019 Full Locale English with SQL Web
 2017 AMI provided by Amazon
EnaSupport : True
Hypervisor : xen
ImageId : ami-000226b77608d973b
ImageLocation : amazon/Windows_Server-2019-English-Full-SQL_2017_Web-2019.06.12
ImageOwnerAlias : amazon
ImageType : machine
KernelId :

Find an AMI 101

AWS Tools for PowerShell User Guide

Name : Windows_Server-2019-English-Full-SQL_2017_Web-2019.06.12
OwnerId : 801119661308
Platform : Windows
ProductCodes : {}
Public : True
RamdiskId :
RootDeviceName : /dev/sda1
RootDeviceType : ebs
SriovNetSupport : simple
State : available
StateReason :
Tags : {}
VirtualizationType : hvm

Get-EC2ImageByName

The Get-EC2ImageByName cmdlet enables you to filter the list of AWS Windows AMIs based on
the type of server configuration you are interested in.

When run with no parameters, as follows, the cmdlet emits the complete set of current filter
names:

PS > Get-EC2ImageByName

WINDOWS_2016_BASE
WINDOWS_2016_NANO
WINDOWS_2016_CORE
WINDOWS_2016_CONTAINER
WINDOWS_2016_SQL_SERVER_ENTERPRISE_2016
WINDOWS_2016_SQL_SERVER_STANDARD_2016
WINDOWS_2016_SQL_SERVER_WEB_2016
WINDOWS_2016_SQL_SERVER_EXPRESS_2016
WINDOWS_2012R2_BASE
WINDOWS_2012R2_CORE
WINDOWS_2012R2_SQL_SERVER_EXPRESS_2016
WINDOWS_2012R2_SQL_SERVER_STANDARD_2016
WINDOWS_2012R2_SQL_SERVER_WEB_2016
WINDOWS_2012R2_SQL_SERVER_EXPRESS_2014
WINDOWS_2012R2_SQL_SERVER_STANDARD_2014
WINDOWS_2012R2_SQL_SERVER_WEB_2014
WINDOWS_2012_BASE
WINDOWS_2012_SQL_SERVER_EXPRESS_2014
WINDOWS_2012_SQL_SERVER_STANDARD_2014

Find an AMI 102

AWS Tools for PowerShell User Guide

WINDOWS_2012_SQL_SERVER_WEB_2014
WINDOWS_2012_SQL_SERVER_EXPRESS_2012
WINDOWS_2012_SQL_SERVER_STANDARD_2012
WINDOWS_2012_SQL_SERVER_WEB_2012
WINDOWS_2012_SQL_SERVER_EXPRESS_2008
WINDOWS_2012_SQL_SERVER_STANDARD_2008
WINDOWS_2012_SQL_SERVER_WEB_2008
WINDOWS_2008R2_BASE
WINDOWS_2008R2_SQL_SERVER_EXPRESS_2012
WINDOWS_2008R2_SQL_SERVER_STANDARD_2012
WINDOWS_2008R2_SQL_SERVER_WEB_2012
WINDOWS_2008R2_SQL_SERVER_EXPRESS_2008
WINDOWS_2008R2_SQL_SERVER_STANDARD_2008
WINDOWS_2008R2_SQL_SERVER_WEB_2008
WINDOWS_2008RTM_BASE
WINDOWS_2008RTM_SQL_SERVER_EXPRESS_2008
WINDOWS_2008RTM_SQL_SERVER_STANDARD_2008
WINDOWS_2008_BEANSTALK_IIS75
WINDOWS_2012_BEANSTALK_IIS8
VPC_NAT

To narrow the set of images returned, specify one or more filter names using the Names parameter.

PS > Get-EC2ImageByName -Names WINDOWS_2016_CORE

Architecture : x86_64
BlockDeviceMappings : {/dev/sda1, xvdca, xvdcb, xvdcc…}
CreationDate : 2019-08-16T09:36:09.000Z
Description : Microsoft Windows Server 2016 Core Locale English AMI provided by
 Amazon
EnaSupport : True
Hypervisor : xen
ImageId : ami-06f2a2afca06f15fc
ImageLocation : amazon/Windows_Server-2016-English-Core-Base-2019.08.16
ImageOwnerAlias : amazon
ImageType : machine
KernelId :
Name : Windows_Server-2016-English-Core-Base-2019.08.16
OwnerId : 801119661308
Platform : Windows
ProductCodes : {}
Public : True
RamdiskId :

Find an AMI 103

AWS Tools for PowerShell User Guide

RootDeviceName : /dev/sda1
RootDeviceType : ebs
SriovNetSupport : simple
State : available
StateReason :
Tags : {}
VirtualizationType : hvm

Launch an Amazon EC2 Instance Using Windows PowerShell

To launch an Amazon EC2 instance, you need the key pair and security group that you created
in the previous sections. You also need the ID of an Amazon Machine Image (AMI). For more
information, see the following documentation:

• Creating a Key Pair

• Create a Security Group Using Windows PowerShell

• Find an Amazon Machine Image Using Windows PowerShell

Important

If you launch an instance that is not within the Free Tier, you are billed after you launch the
instance and charged for the time that the instance is running even if it remains idle.

Topics

• Launching an Instance in EC2-Classic

• Launching an Instance in a VPC

• Launching a Spot Instance in a VPC

Launching an Instance in EC2-Classic

Warning

We are retiring EC2-Classic on August 15, 2022. We recommend that you migrate from
EC2-Classic to a VPC. For more information, see Migrate from EC2-Classic to a VPC in the
Amazon EC2 User Guide for Linux Instances or the Amazon EC2 User Guide for Windows

Launch an Instance 104

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/vpc-migrate.html

AWS Tools for PowerShell User Guide

Instances. Also see the blog post EC2-Classic Networking is Retiring – Here's How to
Prepare.

The following command creates and launches a single t1.micro instance.

PS > New-EC2Instance -ImageId ami-c49c0dac `
 -MinCount 1 `
 -MaxCount 1 `
 -KeyName myPSKeyPair `
 -SecurityGroups myPSSecurityGroup `
 -InstanceType t1.micro

ReservationId : r-b70a0ef1
OwnerId : 123456789012
RequesterId :
Groups : {myPSSecurityGroup}
GroupName : {myPSSecurityGroup}
Instances : {}

Your instance is in the pending state initially, but is in the running state after a few minutes. To
view information about your instance, use the Get-EC2Instance cmdlet. If you have more than
one instance, you can filter the results on the reservation ID using the Filter parameter. First,
create an object of type Amazon.EC2.Model.Filter. Next, call Get-EC2Instance that uses the
filter, and then displays the Instances property.

PS > $reservation = New-Object 'collections.generic.list[string]'
PS > $reservation.add("r-5caa4371")
PS > $filter_reservation = New-Object Amazon.EC2.Model.Filter -Property @{Name =
 "reservation-id"; Values = $reservation}
PS > (Get-EC2Instance -Filter $filter_reservation).Instances

AmiLaunchIndex : 0
Architecture : x86_64
BlockDeviceMappings : {/dev/sda1}
ClientToken :
EbsOptimized : False
Hypervisor : xen
IamInstanceProfile :
ImageId : ami-c49c0dac
InstanceId : i-5203422c

Launch an Instance 105

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/vpc-migrate.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

AWS Tools for PowerShell User Guide

InstanceLifecycle :
InstanceType : t1.micro
KernelId :
KeyName : myPSKeyPair
LaunchTime : 12/2/2018 3:38:52 PM
Monitoring : Amazon.EC2.Model.Monitoring
NetworkInterfaces : {}
Placement : Amazon.EC2.Model.Placement
Platform : Windows
PrivateDnsName :
PrivateIpAddress : 10.25.1.11
ProductCodes : {}
PublicDnsName :
PublicIpAddress : 198.51.100.245
RamdiskId :
RootDeviceName : /dev/sda1
RootDeviceType : ebs
SecurityGroups : {myPSSecurityGroup}
SourceDestCheck : True
SpotInstanceRequestId :
SriovNetSupport :
State : Amazon.EC2.Model.InstanceState
StateReason :
StateTransitionReason :
SubnetId :
Tags : {}
VirtualizationType : hvm
VpcId :

Launching an Instance in a VPC

The following command creates a single m1.small instance in the specified private subnet. The
security group must be valid for the specified subnet.

PS > New-EC2Instance `
 -ImageId ami-c49c0dac `
 -MinCount 1 -MaxCount 1 `
 -KeyName myPSKeyPair `
 -SecurityGroupId sg-5d293231 `
 -InstanceType m1.small `
 -SubnetId subnet-d60013bf

ReservationId : r-b70a0ef1

Launch an Instance 106

AWS Tools for PowerShell User Guide

OwnerId : 123456789012
RequesterId :
Groups : {}
GroupName : {}
Instances : {}

Your instance is in the pending state initially, but is in the running state after a few minutes. To
view information about your instance, use the Get-EC2Instance cmdlet. If you have more than
one instance, you can filter the results on the reservation ID using the Filter parameter. First,
create an object of type Amazon.EC2.Model.Filter. Next, call Get-EC2Instance that uses the
filter, and then displays the Instances property.

PS > $reservation = New-Object 'collections.generic.list[string]'
PS > $reservation.add("r-b70a0ef1")
PS > $filter_reservation = New-Object Amazon.EC2.Model.Filter -Property @{Name =
 "reservation-id"; Values = $reservation}
PS > (Get-EC2Instance -Filter $filter_reservation).Instances

AmiLaunchIndex : 0
Architecture : x86_64
BlockDeviceMappings : {/dev/sda1}
ClientToken :
EbsOptimized : False
Hypervisor : xen
IamInstanceProfile :
ImageId : ami-c49c0dac
InstanceId : i-5203422c
InstanceLifecycle :
InstanceType : m1.small
KernelId :
KeyName : myPSKeyPair
LaunchTime : 12/2/2018 3:38:52 PM
Monitoring : Amazon.EC2.Model.Monitoring
NetworkInterfaces : {}
Placement : Amazon.EC2.Model.Placement
Platform : Windows
PrivateDnsName :
PrivateIpAddress : 10.25.1.11
ProductCodes : {}
PublicDnsName :
PublicIpAddress : 198.51.100.245
RamdiskId :
RootDeviceName : /dev/sda1

Launch an Instance 107

AWS Tools for PowerShell User Guide

RootDeviceType : ebs
SecurityGroups : {myPSSecurityGroup}
SourceDestCheck : True
SpotInstanceRequestId :
SriovNetSupport :
State : Amazon.EC2.Model.InstanceState
StateReason :
StateTransitionReason :
SubnetId : subnet-d60013bf
Tags : {}
VirtualizationType : hvm
VpcId : vpc-a01106c2

Launching a Spot Instance in a VPC

The following example script requests a Spot Instance in the specified subnet. The security group
must be one you created for the VPC that contains the specified subnet.

$interface1 = New-Object Amazon.EC2.Model.InstanceNetworkInterfaceSpecification
$interface1.DeviceIndex = 0
$interface1.SubnetId = "subnet-b61f49f0"
$interface1.PrivateIpAddress = "10.0.1.5"
$interface1.Groups.Add("sg-5d293231")
Request-EC2SpotInstance `
 -SpotPrice 0.007 `
 -InstanceCount 1 `
 -Type one-time `
 -LaunchSpecification_ImageId ami-7527031c `
 -LaunchSpecification_InstanceType m1.small `
 -Region us-west-2 `
 -LaunchSpecification_NetworkInterfaces $interface1

AWS Lambda and AWS Tools for PowerShell

By using the AWSLambdaPSCore module, you can develop AWS Lambda functions in PowerShell
Core 6.0 using the .NET Core 2.1 runtime. PowerShell developers can manage AWS resources and
write automation scripts in the PowerShell environment by using Lambda. PowerShell support
in Lambda lets you run PowerShell scripts or functions in response to any Lambda event, such as
an Amazon S3 event or Amazon CloudWatch scheduled event. The AWSLambdaPSCore module is
a separate AWS module for PowerShell; it is not part of the AWS Tools for PowerShell, nor does
installing the AWSLambdaPSCore module install the AWS Tools for PowerShell.

AWS Lambda and AWS Tools for PowerShell 108

https://www.powershellgallery.com/packages/AWSLambdaPSCore

AWS Tools for PowerShell User Guide

After you install the AWSLambdaPSCore module, you can use any available PowerShell cmdlets
—or develop your own—to author serverless functions. The AWS Lambda Tools for PowerShell
module includes project templates for PowerShell-based serverless applications, and tools to
publish projects to AWS.

AWSLambdaPSCore module support is available in all regions that support Lambda. For more
information about supported regions, see the AWS region table.

Prerequisites

The following steps are required before you can install and use the AWSLambdaPSCore module.
For more detail about these steps, see Setting Up a PowerShell Development Environment in the
AWS Lambda Developer Guide.

• Install the correct release of PowerShell – Lambda's support for PowerShell is based on the
cross-platform PowerShell Core 6.0 release. You can develop PowerShell Lambda functions
on Windows, Linux, or Mac. If you don’t have at least this release of PowerShell installed,
instructions are available on the Microsoft PowerShell documentation website.

• Install the .NET Core 2.1 SDK – Because PowerShell Core is based on .NET Core, the Lambda
support for PowerShell uses the same .NET Core 2.1 Lambda runtime for both .NET Core and
PowerShell Lambda functions. The Lambda PowerShell publishing cmdlets use the .NET Core
2.1 SDK to create the Lambda deployment package. The .NET Core 2.1 SDK is available from the
Microsoft Download Center. Be sure to install the SDK, not the Runtime.

Install the AWSLambdaPSCore Module

After completing the prerequisites, you are ready to install the AWSLambdaPSCore module. Run
the following command in a PowerShell Core session.

PS> Install-Module AWSLambdaPSCore -Scope CurrentUser

You are ready to start developing Lambda functions in PowerShell. For more information about
how to get started, see Programming Model for Authoring Lambda Functions in PowerShell in the
AWS Lambda Developer Guide.

See Also

• Announcing Lambda Support for PowerShell Core on the AWS Developer Blog

Prerequisites 109

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-powershell-setup-dev-environment.html
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell
https://www.microsoft.com/net/download
https://docs.aws.amazon.com/lambda/latest/dg/powershell-programming-model.html
https://aws.amazon.com/blogs/developer/announcing-lambda-support-for-powershell-core/

AWS Tools for PowerShell User Guide

• AWSLambdaPSCore module on the PowerShell Gallery website

• Setting Up a PowerShell Development Environment

• AWS Lambda Tools for Powershell on GitHub

• AWS Lambda Console

Amazon SQS, Amazon SNS and Tools for Windows PowerShell

This section provides examples that show how to:

• Create an Amazon SQS queue and get queue ARN (Amazon Resource Name).

• Create an Amazon SNS topic.

• Give permissions to the SNS topic so that it can send messages to the queue.

• Subscribe the queue to the SNS topic

• Give IAM users or AWS accounts permissions to publish to the SNS topic and read messages from
the SQS queue.

• Verify results by publishing a message to the topic and reading the message from the queue.

Create an Amazon SQS queue and get queue ARN

The following command creates an SQS queue in your default region. The output shows the URL of
the new queue.

PS > New-SQSQueue -QueueName myQueue
https://sqs.us-west-2.amazonaws.com/123456789012/myQueue

The following command retrieves the ARN of the queue.

PS > Get-SQSQueueAttribute -QueueUrl https://sqs.us-west-2.amazonaws.com/123456789012/
myQueue -AttributeName QueueArn
...
QueueARN : arn:aws:sqs:us-west-2:123456789012:myQueue
...

Amazon SQS, Amazon SNS and Tools for Windows PowerShell 110

https://www.powershellgallery.com/packages/AWSLambdaPSCore/1.0.0.2
https://docs.aws.amazon.com/lambda/latest/dg/lambda-powershell-setup-dev-environment.html
https://github.com/aws/aws-lambda-dotnet/tree/master/PowerShell
https://console.aws.amazon.com/lambda/home

AWS Tools for PowerShell User Guide

Create an Amazon SNS topic

The following command creates an SNS topic in your default region, and returns the ARN of the
new topic.

PS > New-SNSTopic -Name myTopic
arn:aws:sns:us-west-2:123456789012:myTopic

Give permissions to the SNS topic

The following example script creates both an SQS queue and an SNS topic, and grants permissions
to the SNS topic so that it can send messages to the SQS queue:

create the queue and topic to be associated
$qurl = New-SQSQueue -QueueName "myQueue"
$topicarn = New-SNSTopic -Name "myTopic"

get the queue ARN to inject into the policy; it will be returned
in the output's QueueARN member but we need to put it into a variable
so text expansion in the policy string takes effect
$qarn = (Get-SQSQueueAttribute -QueueUrl $qurl -AttributeNames "QueueArn").QueueARN

construct the policy and inject arns
$policy = @"
{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "SQS:SendMessage",
 "Resource": "$qarn",
 "Condition": { "ArnEquals": { "aws:SourceArn": "$topicarn" } }
 }
}
"@

set the policy
Set-SQSQueueAttribute -QueueUrl $qurl -Attribute @{ Policy=$policy }

Create an Amazon SNS topic 111

AWS Tools for PowerShell User Guide

Subscribe the queue to the SNS topic

The following command subscribes the queue myQueue to the SNS topic myTopic, and returns the
Subscription ID:

PS > Connect-SNSNotification `
 -TopicARN arn:aws:sns:us-west-2:123456789012:myTopic `
 -Protocol SQS `
 -Endpoint arn:aws:sqs:us-west-2:123456789012:myQueue
arn:aws:sns:us-west-2:123456789012:myTopic:f8ff77c6-e719-4d70-8e5c-a54d41feb754

Give permissions

The following command grants permission to perform the sns:Publish action on the topic
myTopic

PS > Add-SNSPermission `
 -TopicArn arn:aws:sns:us-west-2:123456789012:myTopic `
 -Label ps-cmdlet-topic `
 -AWSAccountIds 123456789012 `
 -ActionNames publish

The following command grants permission to perform the sqs:ReceiveMessage and
sqs:DeleteMessage actions on the queue myQueue.

PS > Add-SQSPermission `
 -QueueUrl https://sqs.us-west-2.amazonaws.com/123456789012/myQueue `
 -AWSAccountId "123456789012" `
 -Label queue-permission `
 -ActionName SendMessage, ReceiveMessage

Verify results

The following command tests your new queue and topic by publishing a message to the SNS topic
myTopic and returns the MessageId.

PS > Publish-SNSMessage `
 -TopicArn arn:aws:sns:us-west-2:123456789012:myTopic `
 -Message "Have A Nice Day!"

Subscribe the queue to the SNS topic 112

AWS Tools for PowerShell User Guide

728180b6-f62b-49d5-b4d3-3824bb2e77f4

The following command retrieves the message from the SQS queue myQueue and displays it.

PS > Receive-SQSMessage -QueueUrl https://sqs.us-west-2.amazonaws.com/123456789012/
myQueue

Attributes : {}
Body : {
 "Type" : "Notification",
 "MessageId" : "491c687d-b78d-5c48-b7a0-3d8d769ee91b",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:myTopic",
 "Message" : "Have A Nice Day!",
 "Timestamp" : "2019-09-09T21:06:27.201Z",
 "SignatureVersion" : "1",
 "Signature" :
 "llE17A2+XOuJZnw3TlgcXz4C4KPLXZxbxoEMIirelhl3u/oxkWmz5+9tJKFMns1ZOqQvKxk
+ExfEZcD5yWt6biVuBb8pyRmZ1bO3hUENl3ayv2WQiQT1vpLpM7VEQN5m+hLIiPFcs
 vyuGkJReV7lOJWPHnCN
+qTE2lId2RPkFOeGtLGawTsSPTWEvJdDbLlf7E0zZ0q1niXTUtpsZ8Swx01X3QO6u9i9qBFt0ekJFZNJp6Avu05hIklb4yoRs1IkbLVNBK/
y0a8Yl9lWp7a7EoWaBn0zhCESe7o
 kZC6ncBJWphX7KCGVYD0qhVf/5VDgBuv9w8T+higJyvr3WbaSvg==",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/
SimpleNotificationService-6aad65c2f9911b05cd53efda11f913f9.pem",
 "UnsubscribeURL" :
 "https://sns.us-west-2.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-west-2:123456789012:myTopic:22b77de7-
a216-4000-9a23-bf465744ca84"
 }
MD5OfBody : 5b5ee4f073e9c618eda3718b594fa257
MD5OfMessageAttributes :
MessageAttributes : {}
MessageId : 728180b6-f62b-49d5-b4d3-3824bb2e77f4
ReceiptHandle :
 AQEB2vvk1e5cOKFjeIWJticabkc664yuDEjhucnIOqdVUmie7bX7GiJbl7F0enABUgaI2XjEcNPxixhVc/
wfsAJZLNHnl8SlbQa0R/kD+Saqa4OIvfj8x3M4Oh1yM1cVKpYmhAzsYrAwAD5g5FvxNBD6zs
 +HmXdkax2Wd+9AxrHlQZV5ur1MoByKWWbDbsqoYJTJquCclOgWIak/sBx/
daBRMTiVQ4GHsrQWMVHtNC14q7Jy/0L2dkmb4dzJfJq0VbFSX1G+u/lrSLpgae+Dfux646y8yFiPFzY4ua4mCF/
SVUn63Spy
 sHN12776axknhg3j9K/Xwj54DixdsegnrKoLx+ctI
+0jzAetBR66Q1VhIoJAq7s0a2MseyOeM/Jjucg6Sr9VUnTWVhV8ErXmotoiEg==

Verify results 113

AWS Tools for PowerShell User Guide

CloudWatch from the AWS Tools for Windows PowerShell

This section shows an example of how to use the Tools for Windows PowerShell to publish custom
metric data to CloudWatch.

This example assumes that you have set default credentials and a default region for your
PowerShell session.

Publish a Custom Metric to Your CloudWatch Dashboard

The following PowerShell code initializes an CloudWatch MetricDatum object and posts it to the
service. You can see the result of this operation by navigating to the CloudWatch console.

$dat = New-Object Amazon.CloudWatch.Model.MetricDatum
$dat.Timestamp = (Get-Date).ToUniversalTime()
$dat.MetricName = "New Posts"
$dat.Unit = "Count"
$dat.Value = ".50"
Write-CWMetricData -Namespace "Usage Metrics" -MetricData $dat

Note the following:

• The date-time information that you use to initialize $dat.Timestamp must be in Universal Time
(UTC).

• The value that you use to initialize $dat.Value can be either a string value enclosed in quotes,
or a numeric value (no quotes). The example shows a string value.

See Also

• Work with AWS services in the AWS Tools for PowerShell

• AmazonCloudWatchClient.PutMetricData (.NET SDK Reference)

• MetricDatum (Service API Reference)

• Amazon CloudWatch Console

CloudWatch from the AWS Tools for Windows PowerShell 114

https://console.aws.amazon.com/cloudwatch/home
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchPutMetricDataPutMetricDataRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_MetricDatum.html
https://console.aws.amazon.com/cloudwatch/home

AWS Tools for PowerShell User Guide

Using the ClientConfig parameter in cmdlets

The ClientConfig parameter can be used to specify certain configuration settings when
you connect to a service. Most of the possible properties of this parameter are defined in the
Amazon.Runtime.ClientConfig class, which is inherited into the APIs for AWS services. For
an example of simple inheritance, see the Amazon.Keyspaces.AmazonKeyspacesConfig
class. In addition, some services define additional properties that are appropriate only
for that service. For an example of additional properties that have been defined, see the
Amazon.S3.AmazonS3Config class, specifically the ForcePathStyle property.

Using the ClientConfig parameter

To use the ClientConfig parameter, you can specify it on the command line as a ClientConfig
object or use PowerShell splatting to pass a collection of parameter values to a command as
a unit. These methods are shown in the following examples. The examples assume that the
AWS.Tools.S3 module has been installed and imported, and that you have a [default]
credentials profile with appropriate permissions.

Defining a ClientConfig object

$s3Config = New-Object -TypeName Amazon.S3.AmazonS3Config
$s3Config.ForcePathStyle = $true
$s3Config.Timeout = [TimeSpan]::FromMilliseconds(150000)
Get-S3Object -BucketName <BUCKET_NAME> -ClientConfig $s3Config

Adding ClientConfig properties by using PowerShell splatting

$params=@{
 ClientConfig=@{
 ForcePathStyle=$true
 Timeout=[TimeSpan]::FromMilliseconds(150000)
 }
 BucketName="<BUCKET_NAME>"
}

Get-S3Object @params

Using ClientConfig 115

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TClientConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Keyspaces/TKeyspacesConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Config.html

AWS Tools for PowerShell User Guide

Using an undefined property

When using PowerShell splatting, if you specify a ClientConfig property that doesn't exist,
the AWS Tools for PowerShell doesn't detect the error until runtime, at which time it returns an
exception. Modifying the example from above:

$params=@{
 ClientConfig=@{
 ForcePathStyle=$true
 UndefinedProperty="Value"
 Timeout=[TimeSpan]::FromMilliseconds(150000)
 }
 BucketName="<BUCKET_NAME>"
}

Get-S3Object @params

This example produces an exception similar to the following:

Cannot bind parameter 'ClientConfig'. Cannot create object of type
 "Amazon.S3.AmazonS3Config". The UndefinedProperty property was not found for the
 Amazon.S3.AmazonS3Config object.

Specifying the AWS Region

You can use the ClientConfig parameter to set the AWS Region for the command. The Region is
set through the RegionEndpoint property. The AWS Tools for PowerShell calculates the Region
to use according to the following precedence:

1. The -Region parameter

2. The Region passed in the ClientConfig parameter

3. The PowerShell session state

4. The shared AWS config file

5. The environment variables

6. The Amazon EC2 instance metadata, if enabled.

Using an undefined property 116

AWS Tools for PowerShell User Guide

Security for this AWS Product or Service

Cloud security at Amazon Web Services (AWS) is the highest priority. As an AWS customer, you
benefit from a data center and network architecture that is built to meet the requirements of the
most security-sensitive organizations. Security is a shared responsibility between AWS and you. The
Shared Responsibility Model describes this as Security of the Cloud and Security in the Cloud.

Security of the Cloud – AWS is responsible for protecting the infrastructure that runs all of the
services offered in the AWS Cloud and providing you with services that you can use securely.
Our security responsibility is the highest priority at AWS, and the effectiveness of our security is
regularly tested and verified by third-party auditors as part of the AWS Compliance Programs.

Security in the Cloud – Your responsibility is determined by the AWS service you are using,
and other factors including the sensitivity of your data, your organization’s requirements, and
applicable laws and regulations.

This AWS product or service follows the shared responsibility model through the specific Amazon
Web Services (AWS) services it supports. For AWS service security information, see the AWS service
security documentation page and AWS services that are in scope of AWS compliance efforts by
compliance program.

Topics

• Data protection in this AWS product or service

• Identity and Access Management

• Compliance Validation for this AWS Product or Service

• Enforcing a minimum TLS version in the Tools for PowerShell

Data protection in this AWS product or service

The AWS shared responsibility model applies to data protection in this AWS product or service. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

Data protection 117

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS Tools for PowerShell User Guide

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with this AWS product or service or other AWS services using the console, API,
AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names
may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

Data encryption

A key feature of any secure service is that information is encrypted when it is not being actively
used.

Encryption at Rest

The AWS Tools for PowerShell does not itself store any customer data other than the credentials it
needs to interact with the AWS services on the user's behalf.

If you use the AWS Tools for PowerShell to invoke an AWS service that transmits customer data to
your local computer for storage, then refer to the Security & Compliance chapter in that service's
User Guide for information on how that data is stored, protected, and encrypted.

Data encryption 118

https://aws.amazon.com/compliance/fips/

AWS Tools for PowerShell User Guide

Encryption in Transit

By default, all data transmitted from the client computer running the AWS Tools for PowerShell
and AWS service endpoints is encrypted by sending everything through an HTTPS/TLS connection.

You don't need to do anything to enable the use of HTTPS/TLS. It is always enabled.

Identity and Access Management

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS resources. IAM is an AWS service that you can use
with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS services work with IAM

• Troubleshooting AWS identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS.

Service user – If you use AWS services to do your job, then your administrator provides you with
the credentials and permissions that you need. As you use more AWS features to do your work,
you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in AWS, see
Troubleshooting AWS identity and access or the user guide of the AWS service you are using.

Service administrator – If you're in charge of AWS resources at your company, you probably have
full access to AWS. It's your job to determine which AWS features and resources your service users
should access. You must then submit requests to your IAM administrator to change the permissions
of your service users. Review the information on this page to understand the basic concepts of

Identity and Access Management 119

AWS Tools for PowerShell User Guide

IAM. To learn more about how your company can use IAM with AWS, see the user guide of the AWS
service you are using.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS. To view example AWS identity-based policies that you
can use in IAM, see the user guide of the AWS service you are using.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.

Authenticating with identities 120

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS Tools for PowerShell User Guide

We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

Authenticating with identities 121

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose

AWS Tools for PowerShell User Guide

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must

Authenticating with identities 122

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS Tools for PowerShell User Guide

have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

Managing access using policies 123

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS Tools for PowerShell User Guide

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Managing access using policies 124

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS Tools for PowerShell User Guide

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Managing access using policies 125

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS Tools for PowerShell User Guide

How AWS services work with IAM

To get a high-level view of how AWS services work with most IAM features, see AWS services that
work with IAM in the IAM User Guide.

To learn how to use a specific AWS service with IAM, see the security section of the relevant
service's User Guide.

Troubleshooting AWS identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS and IAM.

Topics

• I am not authorized to perform an action in AWS

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS resources

I am not authorized to perform an action in AWS

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
awes:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 awes:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the awes:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

How AWS services work with IAM 126

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Tools for PowerShell User Guide

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS. However, the action requires the service to have permissions that are
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS supports these features, see How AWS services work with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Troubleshooting AWS identity and access 127

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS Tools for PowerShell User Guide

Compliance Validation for this AWS Product or Service

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your

Compliance Validation 128

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

AWS Tools for PowerShell User Guide

compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

This AWS product or service follows the shared responsibility model through the specific Amazon
Web Services (AWS) services it supports. For AWS service security information, see the AWS service
security documentation page and AWS services that are in scope of AWS compliance efforts by
compliance program.

Enforcing a minimum TLS version in the Tools for PowerShell

To increase security when communicating with AWS services, you should configure the Tools for
PowerShell to use the appropriate TLS version. For information about how to do this, see Enforcing
a minimum TLS version in the AWS SDK for .NET Developer Guide.

Enforcing a minimum TLS version 129

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/enforcing-tls.html#enforcing-tls-ps
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/enforcing-tls.html#enforcing-tls-ps
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/

AWS Tools for PowerShell User Guide

Cmdlet reference for the Tools for PowerShell

The Tools for PowerShell provides cmdlets that you can use to access AWS services. To see what
cmdlets are available, see the AWS Tools for PowerShell Cmdlet Reference.

130

https://docs.aws.amazon.com/powershell/latest/reference/

AWS Tools for PowerShell User Guide

Document history

This topic describes significant changes to the documentation for the AWS Tools for PowerShell.

We also update the documentation periodically in response to customer feedback. To send
feedback about a topic, use the feedback buttons next to "Did this page help you?" located at the
bottom of each page.

For additional information about changes and updates to the AWS Tools for PowerShell, see the
release notes.

Change Description Date

Configure tool authentication
with AWS

Added information about
support for SSO in the AWS
Tools for PowerShell.

March 15, 2024

Cmdlet reference for the
Tools for PowerShell

Added section with a link
to the Tools for PowerShell
cmdlet reference.

November 17, 2023

Included more IAM best
practices updates

Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.

October 12, 2023

Installing on Windows Removed information about
installing the Tools for
Windows PowerShell by using
the MSI, which has been
deprecated.

September 25, 2023

IAM best practices updates Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.

September 8, 2023

Pipelining and $AWSHistory Added the IncludeSe
nsitiveData parameter

March 9, 2023

131

https://aws.amazon.com/releasenotes/PowerShell
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Tools for PowerShell User Guide

to the Set-AWSHi
storyConfiguration
cmdlet.

Using the ClientConfig
parameter in cmdlets

Added information about
support for the ClientConfig
parameter.

October 28, 2022

Launch an Amazon EC2
Instance Using Windows
PowerShell

Added notes about retiring
EC2-Classic.

July 26, 2022

AWS Tools for PowerShell
Version 4

Added information about
version 4, including installat
ion instructions for both
Windows and Linux/macOS,
and a migration topic that
describes the differences from
version 3 and introduces new
features.

November 21, 2019

AWS Tools for PowerShell
3.3.563

Added information about how
to install and use the preview
version of the AWS.Tools
.Common module. This new
module breaks apart the
older monolithic package into
one shared module and one
module per AWS service.

October 18, 2019

AWS Tools for PowerShell
3.3.343.0

Added information to the
Using the AWS Tools for
PowerShell section introduci
ng the AWS Lambda Tools for
PowerShell for PowerShell
Core developers to build AWS
Lambda functions.

September 11, 2018

132

https://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up-windows.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up-linux-mac.html
https://docs.aws.amazon.com/powershell/latest/userguide/v4migration.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-using.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-using.html

AWS Tools for PowerShell User Guide

AWS Tools for Windows
PowerShell 3.1.31.0

Added information to the
Getting Started section about
new cmdlets that use Security
Assertion Markup Language
(SAML) to support configuring
federated identity for users.

December 1, 2015

AWS Tools for Windows
PowerShell 2.3.19

Added information to the
Cmdlets Discovery and Aliases
section about the new Get-
AWSCmdletName cmdlet
that can help users more
easily find their desired AWS
cmdlets.

February 5, 2015

133

https://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-started.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-discovery-aliases.html

AWS Tools for PowerShell User Guide

AWS Tools for Windows
PowerShell 1.1.1.0

Collection output from
cmdlets is always enumerate
d to the PowerShell pipeline.
Automatic support for
pageable service calls. New
$AWSHistory shell variable
collects service responses and
optionally service requests.
AWSRegion instances use
Region field instead of
SystemName to aid pipelinin
g. Remove-S3Bucket supports
a -DeleteObjects switch
option. Fixed usability issue
with Set-AWSCredentials.
Initialize-AWSDefaults reports
from where it obtained
credentials and region
data. Stop-EC2Instance
accepts Amazon.EC2.Model.R
eservation instances as input.
Generic List<T> parameter
 types replaced with array
types (T[]). Cmdlets that
delete or terminate resources
prompt for confirmation prior
to deletion. Write-S3Object
supports in-line text content
to upload to Amazon S3.

May 15, 2013

134

AWS Tools for PowerShell User Guide

AWS Tools for Windows
PowerShell 1.0.1.0

The install location of the
Tools for Windows PowerShel
l module has changed so that
environments using Windows
PowerShell version 3 can take
advantage of auto-loading.
The module and supporting
files are now installed to an
AWSPowerShell subfolder
beneath AWS ToolsPowe
rShell . Files from previous
versions that exist in the AWS
ToolsPowerShell folder
are automatically removed by
the installer. The PSModuleP
ath for Windows PowerShel
l (all versions) is updated
in this release to contain
the parent folder of the
module (AWS ToolsPowe
rShell). For systems
with Windows PowerShel
l version 2, the Start Menu
shortcut is updated to
import the module from the
new location and then run
Initialize-AWSDefa
ults . For systems with
Windows PowerShell version
3, the Start Menu shortcut
is updated to remove the
Import-Module command,
leaving just Initializ
e-AWSDefaults . If you
edited your PowerShell profile
to perform an Import-Mo

December 21, 2012

135

AWS Tools for PowerShell User Guide

dule of the AWSPowerS
hell.psd1 file, you will
need to update it to point
to the file's new location (or,
if using PowerShell version
3, remove the Import-Mo
dule statement as it is no
longer needed). As a result of
these changes, the Tools for
Windows PowerShell module
is now listed as an available
module when executing
Get-Module -ListAvai
lable . In addition, for
users of Windows PowerShel
l version 3, the execution
of any cmdlet exported by
the module will automatic
ally load the module in the
current PowerShell shell
without needing to use
Import-Module first. This
enables interactive use of
the cmdlets on a system
with an execution policy that
disallows script execution.

AWS Tools for Windows
PowerShell 1.0.0.0

Initial release December 6, 2012

136

	AWS Tools for PowerShell
	Table of Contents
	What are the AWS Tools for PowerShell?
	Maintenance and support for SDK major versions
	AWS.Tools - A modularized version of the AWS Tools for PowerShell
	AWSPowerShell.NetCore - A single-module version of the AWS Tools for PowerShell
	AWSPowerShell - A single-module version for Windows PowerShell
	How to use this guide

	Installing the AWS Tools for PowerShell
	Installing the AWS Tools for PowerShell on Windows
	Prerequisites
	Install AWS.Tools on Windows
	Install AWSPowerShell.NetCore on Windows
	Install AWSPowerShell on Windows PowerShell
	Enable Script Execution
	Versioning
	Updating the AWS Tools for PowerShell on Windows
	Update the modularized AWS.Tools modules
	Update the Tools for PowerShell Core
	Update the Tools for Windows PowerShell

	Installing AWS Tools for PowerShell on Linux or macOS
	Overview of Setup
	Prerequisites
	Install AWS.Tools on Linux or macOS
	Install AWSPowerShell.NetCore on Linux or macOS
	Script Execution
	Configure a PowerShell Console to Use the AWS Tools for PowerShell Core (AWSPowerShell.NetCore Only)
	Initialize Your PowerShell Session
	Versioning
	Updating the AWS Tools for PowerShell on Linux or macOS
	Update the modularized AWS.Tools modules
	Update the Tools for PowerShell Core

	Related Information

	Migrating from AWS Tools for PowerShell Version 3.3 to Version 4
	New Fully Modularized AWS.Tools Version
	New Get-AWSService cmdlet
	New -Select Parameter to Control the Object Returned by a Cmdlet
	More Consistent Limiting of the Number of Items in the Output
	Easier to Use Stream Parameters
	Extending the Pipe by Property Name
	Static Common Parameters
	AWS.Tools Declares and Enforces Manadatory Parameters
	All Parameters Are Nullable
	Removing Previously Deprecated Features

	Get started with the AWS Tools for Windows PowerShell
	Configure tool authentication with AWS
	Enable and configure IAM Identity Center
	Configure the Tools for PowerShell to use IAM Identity Center.
	Start an AWS access portal session
	Example
	Additional information
	Use the AWS CLI for portal login
	Configure the Tools for PowerShell to use IAM Identity Center through the AWS CLI.
	Start an AWS access portal session
	Example
	Additional information

	Specify AWS Regions
	Specifying a Custom or Nonstandard Endpoint
	Additional information

	Configure federated identity with the AWS Tools for PowerShell
	Prerequisites
	How an Identity-Federated User Gets Federated Access to AWS Service APIs
	How SAML Support Works in the AWS Tools for PowerShell
	How to Use the PowerShell SAML Configuration Cmdlets
	How to Run the Set-AWSSamlEndpoint and Set-AWSSamlRoleProfile Cmdlets
	How to Use Role Profiles to Run Cmdlets that Require AWS Credentials
	Example 1: Set a Default Role with Set-AWSCredential
	Example 2: Change Role Profiles During a PowerShell Session
	Example 3: Get Instances in a Region

	Additional Reading

	Cmdlet discovery and aliases
	Cmdlet Discovery
	Cmdlet Naming and Aliases
	Aliases

	Pipelining and $AWSHistory
	$AWSHistory
	Set-AWSHistoryConfiguration
	$AWSHistory Examples
	Automatic Page-to-Completion for Operations that Return Multiple Pages

	Credential and profile resolution
	Credentials Search Order

	Additional information about users and roles
	Users and permission sets
	Service roles

	Using legacy credentials
	Important warnings and guidance for credentials
	Using AWS Credentials
	Credentials Store Locations
	Managing Profiles
	Add a New profile
	Update a Profile
	List Profiles
	Remove a Profile

	Specifying Credentials
	Default Profile (Recommended)
	Session Profile
	Command Profile

	Credentials Search Order
	Credential Handling in AWS Tools for PowerShell Core

	Shared Credentials in AWS Tools for PowerShell
	Using an IAM Role with AWS Tools for PowerShell
	Setup of profiles for assuming a role

	Using the Credential Profile Types
	The ProfilesLocation Common Parameter
	Save Credentials to a Credentials File

	Displaying Your Credential Profiles
	Removing Credential Profiles
	Important Notes

	Work with AWS services in the AWS Tools for PowerShell
	PowerShell File Concatenation Encoding
	Returned Objects for the PowerShell Tools
	Amazon EC2
	Amazon S3
	AWS Lambda and AWS Tools for PowerShell
	Amazon SNS and Amazon SQS
	CloudWatch
	See Also
	Topics
	Amazon S3 and Tools for Windows PowerShell
	Create an Amazon S3 Bucket, Verify Its Region, and Optionally Remove It
	See Also

	Configure an Amazon S3 Bucket as a Website and Enable Logging
	See Also

	Upload Objects to an Amazon S3 Bucket
	Note Regarding Multipart Upload
	Test the Website
	See Also

	Delete Amazon S3 Objects and Buckets
	See Also

	Upload In-Line Text Content to Amazon S3

	Amazon EC2 and Tools for Windows PowerShell
	Creating a Key Pair
	Viewing the Fingerprint of Your Key Pair
	Storing Your Private Key
	Removing Your Key Pair

	Create a Security Group Using Windows PowerShell
	Prerequisites
	Creating a Security Group for EC2-Classic
	Creating a Security Group for EC2-VPC

	Find an Amazon Machine Image Using Windows PowerShell
	Get-EC2Image
	Get-EC2ImageByName

	Launch an Amazon EC2 Instance Using Windows PowerShell
	Launching an Instance in EC2-Classic
	Launching an Instance in a VPC
	Launching a Spot Instance in a VPC

	AWS Lambda and AWS Tools for PowerShell
	Prerequisites
	Install the AWSLambdaPSCore Module
	See Also

	Amazon SQS, Amazon SNS and Tools for Windows PowerShell
	Create an Amazon SQS queue and get queue ARN
	Create an Amazon SNS topic
	Give permissions to the SNS topic
	Subscribe the queue to the SNS topic
	Give permissions
	Verify results

	CloudWatch from the AWS Tools for Windows PowerShell
	Publish a Custom Metric to Your CloudWatch Dashboard
	See Also

	Using the ClientConfig parameter in cmdlets
	Using the ClientConfig parameter
	Using an undefined property
	Specifying the AWS Region

	Security for this AWS Product or Service
	Data protection in this AWS product or service
	Data encryption
	Encryption at Rest
	Encryption in Transit

	Identity and Access Management
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS services work with IAM
	Troubleshooting AWS identity and access
	I am not authorized to perform an action in AWS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS resources

	Compliance Validation for this AWS Product or Service
	Enforcing a minimum TLS version in the Tools for PowerShell

	Cmdlet reference for the Tools for PowerShell
	Document history

